10 resultados para Microcompression of the Trigeminal Ganglion
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Anatomical variability within the autonomic nervous system has long been accepted. This study evaluated the anatomical variability of the cervicothoracic ganglion (CTG) according to its form and, in addition, provided precise measurements between the CTG and the anterior tubercle of the transverse process of the sixth cervical vertebra (C6TP), the first costovertebral articulation, and the vertebral artery. Forty-two adult cadavers were dissected, 22 male and 20 females. Five main forms of CTG were documented; spindle (31.9%), dumbbell (23.2%), truncated (21.7%), perforated (14.5%), and inverted-L (8.7%). The means for length, width, and thickness of the CTG were 18.5 mm, 8.2 mm, and 4.5 mm, respectively. The dimensions were found to be slightly larger in the males than females and on the left sides as compared to the right. The mean shortest distance between the CTGs and the vertebral artery was found to be 2.8 mm, whilst the mean shortest distances to C6TP was 25.7 mm and to the first costovertebral articulation was 1.7 mm. There is great variability in the morphology of the CTG with five common forms consistently seen. The relation to the vertebral artery may influence the form of the ganglion. Two previously undocumented forms are recorded; the truncated which describes the important juxtaposition of the CTG and the vertebral artery and the perforated which describes the piercing of the ganglion itself by the artery. The findings are considered to be of clinical importance to anesthetists, surgeons, neurosurgeons, and anatomists.
Resumo:
Repeated sub-threshold nociceptive electrical stimulation resulting in temporal summation of the limb nociceptive withdrawal reflex is a well-established non-invasive model to investigate the wind-up phenomenon in horses. Due to structural similarities of the trigeminal sensory nucleus to the dorsal horn of the spinal cord, temporal summation should be evoked by repeated transcutaneous electrical stimulation of trigeminal afferents. To evaluate this hypothesis repeated transcutaneous electrical stimulation was applied to the supraorbital and infraorbital nerves of 10 horses. Stimulation intensities varied between 0.5 and 1.3 times the trigemino-cervical reflex threshold defined for single stimulation. Evoked electromyographic activity of the orbicularis oculi, splenius and cleidomastoideus muscles was recorded and the signals analysed in the previously established epochs typical to the early and late component of the blink reflex and to the trigemino-cervical reflex. Behavioural reactions were evaluated with the aid of numerical rating scale. The nociceptive late component and the trigemino-cervical reflex were not elicited by sub-threshold intensity repeated transcutaneous electrical stimulation. Furthermore, the median reflex amplitude for the 10 horses showed a tendency to decline over the stimulation train so temporal summation of afferent trigeminal inputs could not be observed. Therefore, the modulation of trigeminal nociceptive processing attributable to repeated Aδ fibre stimulations seems to differ from spinal processing of similar inputs as it seems to have an inhibitory rather than facilitatory effect. Further evaluation is necessary to highlight the underlying mechanism.
Resumo:
Intraosseous ganglia of the distal tibia are rare. We evaluated the feasibility of surgically treating these lesions with an arthroscopically assisted technique. Five patients with symptomatic distal tibial ganglia underwent surgical curettage and excision with this technique. All patients underwent débridement of the chondral lesion and hypertrophied synovial lining when present, probing of the portal to the ganglion, and subsequently thorough curettage with bone grafting performed through a cortical window made from a separate small incision. Biopsy confirmed the diagnosis in all patients. All patients had eventual relief of symptoms with good integration of bone graft at final followup. There were no recurrences at a minimum followup of 19 months (mean, 38.6 months; range, 19-69 months). Mean time for return to full function was 15.4 weeks (range, 8-17 weeks). There were no intraoperative or postoperative complications. The mean American Orthopaedic Foot and Ankle Society scores increased from 73 points (range, 67-77 points) preoperatively to 94 points (range, 90-100 points) postoperatively. Arthroscopically assisted surgical treatment of ganglia of the distal tibia in the appropriate patient is a reasonably simple technique that relieves symptoms and helps the patient to regain normal gait and full function with no recurrence (in our small series). LEVEL OF EVIDENCE: Level IV, case series. See Guidelines for Authors for a complete description of levels of evidence.
Resumo:
Human auditory nerve afferents consist of two separate systems; one is represented by the large type I cells innervating the inner hair cells and the other one by the small type II cells innervating the outer hair cells. Type I spiral ganglion neurons (SGNs) constitute 96% of the afferent nerve population and, in contrast to other mammals, their soma and pre- and post-somatic segments are unmyelinated. Type II nerve soma and fibers are unmyelinated. Histopathology and clinical experience imply that human SGNs can persist electrically excitable without dendrites, thus lacking connection to the organ of Corti. The biological background to this phenomenon remains elusive. We analyzed the pre- and post-somatic segments of the type I human SGNs using immunohistochemistry and transmission electron microscopy (TEM) in normal and pathological conditions. These segments were found surrounded by non-myelinated Schwann cells (NMSCs) showing strong intracellular expression of laminin-β2/collagen IV. These cells also bordered the perikaryal entry zone and disclosed surface rugosities outlined by a folded basement membrane (BM) expressing laminin-β2 and collagen IV. It is presumed that human large SGNs are demarcated by three cell categories: (a) myelinated Schwann cells, (b) NMSCs and (c) satellite glial cells (SGCs). Their BMs express laminin-β2/collagen IV and reaches the BM of the sensory epithelium at the habenula perforata. We speculate that the NMSCs protect SGNs from further degeneration following dendrite loss. It may give further explanation why SGNs can persist as electrically excitable monopolar cells even after long-time deafness, a blessing for the deaf treated with cochlear implantation.
Resumo:
We present 3 cases of a 12-year-old boy, an 8-year-old girl, and a 9-year-old boy with progressive paresis of the peroneal nerve. Peroneal intraneural ganglia are a rare cause of paralysis of the lower limb in children; more often these symptoms occur because of exostosis. Ultrasound imaging in both patients showed a cystic mass near the fibular neck. Magnetic resonance imaging examination revealed that the ganglion is communicating with the proximal tibiofibular joint. Surgical exploration in these patients confirmed a cystic formation involving the common peroneal nerve. The ganglion originates from the articular nerve branch to the proximal tibiofibular joint. Total recovery of nerve function was seen 2 years later for the first patient, whereas the other 2 showed immediate postoperative improvement of peroneal nerve function and complete recovery within 6 to 8 weeks. On the other hand, patients with exostosis showed varying outcomes. In children with symptoms suspicious of nerve compression, fast diagnosis and immediate treatment are necessary to ensure the best possible recovery.
Resumo:
Neuroligins (NLs) constitute a family of cell-surface proteins that interact with neurexins (beta-Nxs), another class of neuronal cell-surface proteins, one of each class functioning together in synapse formation. The localization of the various neurexins and neuroligins, however, has not yet been clarified in chicken. Therefore, we studied the expression patterns of neurexin-1 (Nx-1) and neuroligin-1 and -3 during embryonic development of the chick retina and brain by reverse-transcriptase polymerase chain reaction (RT-PCR) and in situ hybridization (ISH). While neurexin-1 increased continuously in both brain and retina, the expression of both neuroligins was more variable. As shown by ISH, Nx-1 is expressed in the inner half retina along with differentiation of ganglion and amacrine cells. Transcripts of NL-1 were detected as early as day 4 and increased with the maturation of the different brain regions. In different brain regions, NL-1 showed a different time regulation. Remarkably, neuroligin-3 was entirely absent in retina. This study indicates that synaptogenetic processes in brain and retina use different molecular machineries, whereby the neuroligins might represent the more distinctly regulated part of the neurexin-neuroligin complexes. Noticeably, NL-3 does not seem to be involved in the making of retinal synapses.
Resumo:
The adult mammalian cochlea lacks regenerative capacity, which is the main reason for the permanence of hearing loss. Vestibular organs, in contrast, replace a small number of lost hair cells. The reason for this difference is unknown. In this work we show isolation of sphere-forming stem cells from the early postnatal organ of Corti, vestibular sensory epithelia, the spiral ganglion, and the stria vascularis. Organ of Corti and vestibular sensory epithelial stem cells give rise to cells that express multiple hair cell markers and express functional ion channels reminiscent of nascent hair cells. Spiral ganglion stem cells display features of neural stem cells and can give rise to neurons and glial cell types. We found that the ability for sphere formation in the mouse cochlea decreases about 100-fold during the second and third postnatal weeks; this decrease is substantially faster than the reduction of stem cells in vestibular organs, which maintain their stem cell population also at older ages. Coincidentally, the relative expression of developmental and progenitor cell markers in the cochlea decreases during the first 3 postnatal weeks, which is in sharp contrast to the vestibular system, where expression of progenitor cell markers remains constant or even increases during this period. Our findings indicate that the lack of regenerative capacity in the adult mammalian cochlea is either a result of an early postnatal loss of stem cells or diminishment of stem cell features of maturing cochlear cells.
Resumo:
OBJECTIVE: Multiple studies have proved that microvascular decompression (MVD) is the treatment of choice in cases of medically refractory trigeminal neuralgia (TN). In the elderly, however, the surgical risks related to MVD are assumed to be unacceptably high and various alternative therapies have been proposed. We evaluated the outcomes of MVD in patients aged older than 65 years of age and compared them with the outcomes in a matched group of younger patients. The focus was on procedure-related morbidity rate and long-term outcome. METHODS: This was a retrospective study of 112 patients with TN operated on consecutively over 22 years. The main outcome measures were immediate and long-term postoperative pain relief and neurological status, especially function of trigeminal, facial, and cochlear nerves, as well as surgical complications. A questionnaire was used to assess long-term outcome: pain relief, duration of a pain-free period, need for pain medications, time to recurrence, pain severity, and need for additional treatment. RESULTS: The mean age was 70.35 years. The second and third branches of the trigeminal nerve were most frequently affected (37.3%). The mean follow-up period was 90 months (range, 48-295 months). Seventy-five percent of the patients were completely pain free, 11% were never pain free, and 14% experienced recurrences. No statistically significant differences existed in the outcome between the younger and older patient groups. Postoperative morbidity included trigeminal hypesthesia in 6.25%, hypacusis in 5.4%, and complete hearing loss, vertigo, and partial facial nerve palsy in 0.89% each. Cerebrospinal fluid leak and meningitis occurred in 1 patient each. There were no mortalities in both groups. CONCLUSION: MVD for TN is a safe procedure even in the elderly. The risk of serious morbidity or mortality is similar to that in younger patients. Furthermore, no significant differences in short- and long-term outcome were found. Thus, MVD is the treatment of choice in patients with medically refractory TN, unless their general condition prohibits it.
Resumo:
OBJECTIVE Cochlear implants (CIs) have become the gold standard treatment for deafness. These neuroprosthetic devices feature a linear electrode array, surgically inserted into the cochlea, and function by directly stimulating the auditory neurons located within the spiral ganglion, bypassing lost or not-functioning hair cells. Despite their success, some limitations still remain, including poor frequency resolution and high-energy consumption. In both cases, the anatomical gap between the electrode array and the spiral ganglion neurons (SGNs) is believed to be an important limiting factor. The final goal of the study is to characterize response profiles of SGNs growing in intimate contact with an electrode array, in view of designing novel CI devices and stimulation protocols, featuring a gapless interface with auditory neurons. APPROACH We have characterized SGN responses to extracellular stimulation using multi-electrode arrays (MEAs). This setup allows, in our view, to optimize in vitro many of the limiting interface aspects between CIs and SGNs. MAIN RESULTS Early postnatal mouse SGN explants were analyzed after 6-18 days in culture. Different stimulation protocols were compared with the aim to lower the stimulation threshold and the energy needed to elicit a response. In the best case, a four-fold reduction of the energy was obtained by lengthening the biphasic stimulus from 40 μs to 160 μs. Similarly, quasi monophasic pulses were more effective than biphasic pulses and the insertion of an interphase gap moderately improved efficiency. Finally, the stimulation with an external electrode mounted on a micromanipulator showed that the energy needed to elicit a response could be reduced by a factor of five with decreasing its distance from 40 μm to 0 μm from the auditory neurons. SIGNIFICANCE This study is the first to show electrical activity of SGNs on MEAs. Our findings may help to improve stimulation by and to reduce energy consumption of CIs and thereby contribute to the development of fully implantable devices with better auditory resolution in the future.