7 resultados para Microbiologic study
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
INTRODUCTION: The Nobel Direct implant (Nobel Biocare AB, Göteborg, Sweden) was developed to minimize marginal bone resorption and to result in "soft tissue integration" for an optimized aesthetic outcome. However, conflicting results have been presented in the literature. The aim of this present study was to evaluate the clinical and microbiologic outcomes of Nobel Direct implants. MATERIALS AND METHODS: Ten partially edentulous subjects without evidence of active periodontitis (mean age 55 years) received 12 Nobel Direct implants. Implants were loaded with single crowns after a healing period of 3 to 6 months. Treatment outcomes were assessed at month 24. Routine clinical assessments, intraoral radiographs, and microbiologic samplings were made. Histologic analysis of one failing implant and chemical spectroscopy around three unused implants was performed. Paired Wilcoxon signed-rank test was used for the evaluation of bone loss; otherwise, descriptive analysis was performed. RESULTS: Implants were functionally loaded after 3 to 6 months. At 2 years, the mean bone loss of remaining implants was 2.0 mm (SD +/- 1.1 mm; range: 0.0-3.4 mm). Three out of 12 implants with an early mean bone loss >3 mm were lost. The surviving implants showed increasing bone loss between 6 and 24 months (p = .028). Only 3 out of the 12 implants were considered successful and showed bone loss of <1.7 mm after 2 years. High rates of pathogens, including Aggregatibacter actinomycetemcomitans, Fusobacterium spp., Porphyromonas gingivalis, Pseudomonas aeruginosa, and Tanerella forsythia, were found. Chemical spectroscopy revealed, despite the normal signals from Ti, O, and C, also peaks of P, F, S, N, and Ca. A normal histologic image of osseointegration was observed in the apical part of the retrieved implant. CONCLUSION: Radiographic evidence and 25% implant failures are indications of a low success rate. High counts and prevalence of significant pathogens were found at surviving implants. Although extensive bone loss had occurred in the coronal part, the apical portion of the implant showed some bone to implant integration.
Resumo:
The purpose of this study is to assess clinical and microbiologic effects of the non-surgical treatment of peri-implantitis lesions using either an erbium-doped:yttrium, aluminum, and garnet (Er:YAG) laser or an air-abrasive subgingival polishing method.
Resumo:
The aim of this study is to determine in a randomized trial the impact on treatment outcome after 12 months of different subgingival irrigation solutions during scaling and root planing (SRP).
Resumo:
Background: The bacterial colonization of the oral mucosa was evaluated in patients with asymptomatic oral lichen planus (OLP) and compared to the microbiologic status in mucosally healthy subjects. Methods: Bacteria from patients with clinically and histopathologically diagnosed OLP from the Stomatology Service, Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, were collected with a non-invasive swab system. Samples were taken from OLP lesions on the gingiva and from non-affected sites on the contralateral side of the mouth. The control population did not have OLP and was recruited from the student clinic. All samples were processed with the checkerboard DNA-DNA hybridization method using well-defined bacterial species for the analysis. Results: Significantly higher bacterial counts of Bacteroides ureolyticus (P = 0.001), Dialister species (sp.) (P = 0.006), Staphylococcus haemolyticus (P = 0.007), and Streptococcus agalactiae (P = 0.006) were found in samples taken from OLP lesions compared to sites with no clinical evidence of OLP. Significantly higher bacterial counts were found for Capnocytophaga sputigena, Eikenella corrodens, Lactobacillus crispatus, Mobiluncus curtisii, Neisseria mucosa, Prevotella bivia, Prevotella intermedia, and S. agalactiae at sites with lesions in subjects with OLP compared to sites in control subjects (P <0.001). Conclusions: Microbiologic differences were found between sites with OLP and sites in subjects without a diagnosis of OLP. Specifically, higher counts of staphylococci and S. agalactiae were found in OLP lesions.
Resumo:
Abstract Background: The aim of this study was to examine mechanical, microbiologic, and morphologic changes of the appendicle rim to assess if it is appropriate to dissect the appendix with the ultrasound-activated scalpel (UAS) during laparoscopic appendectomy. Materials and Methods: After laparoscopic resection of the appendix, using conventional Roeder slings, we investigated 50 appendicle rims with an in vitro procedure. The overall time of dissection of the mesoappendix with UAS was noted. Following removal, the appendix was dissected in vitro with the UAS one cme from the resection rim. Seal-burst pressures were recorded. Bacterial cultures of the UAS-resected rim were compared with those of the scissors resected rim. Tissue changes were quantified histologically with hematoxylin and eosin (HE) stains. Results: The average time to dissect the mesoappendix was 228 seconds (25-900). Bacterial culture growths were less in the UAS-resected probes (7 versus 36 positive probes; (p > 0.01). HE-stained tissues revealed mean histologic changes in the lamina propria muscularis externa of 2 mm depth. The seal-burst pressure levels of the appendicle lumen had a mean of 420 mbar. Seal-burst pressures and depths of histologic changes were not dependent on the different stages of appendicitis investigated, gender, or age groups. Seal-burst pressure levels were not related to different depths of tissue changes (P = 0.64). Conclusions: The UAS is a rapid instrument for laparoscopic appendectomy and appears to be safe with respect to stability, sterility and tissue changes. It avoids complex time consuming instrument change manoeuvres and current transmission, which may induce intra- and postoperative complications. Our results suggest that keeping a safety margin of at least 5 mm from the bowel would be sufficient to avoid thermal damage.
Resumo:
BACKGROUND Survival rates in implant dentistry today are high, although late failures do occur for many reasons, including peri-implant infections. The primary objective of this study is to investigate microbiota around single turned implants after 16 to 22 years. Secondary objectives are to compare teeth and implants and to correlate microbiologic, radiographic, and clinical parameters. METHODS A total of 46 patients with single implants were invited for a clinical examination. Clinical data were collected from implants and contralateral natural teeth. Radiographic bone level was measured around implants. Microbiologic samples were taken from implants, contralateral teeth, and the deepest pocket per quadrant. Samples were analyzed with DNA-DNA hybridization including 40 species. Statistical analysis was performed using Wilcoxon signed-rank tests, McNemar tests, and Spearman correlation coefficients with a 0.05 significance level. RESULTS Mean follow-up was 18.5 years (range 16 to 22 years). Tannerella forsythia (1.5 × 10(5)) and Veillonella parvula (1.02 × 10(5)) showed the highest concentrations around implants and teeth, respectively. Porphyromonas gingivalis, Prevotella intermedia, and T. forsythia were significantly more present around implants than teeth. Mean counts were significantly higher around implants than teeth for Parvimonas micra, P. gingivalis, P. intermedia, T. forsythia, and Treponema denticola. Total DNA count was correlated to interproximal bleeding index (r = 0.409) and interproximal probing depth (r = 0.307). No correlations were present with plaque index or radiographic bone level. CONCLUSIONS In the present study, bacterial counts around single implants in periodontally healthy patients are rather low. Although pathogenic bacteria are present, some in higher numbers around implants than teeth (five of 40), the majority of implants present with healthy peri-implant tissues without progressive bone loss.
Resumo:
OBJECTIVES To characterize the physical characteristics of a new low abrasive erythritol powder (EPAP) and to evaluate its influence on the clinical and microbiologic parameters over a period of 6 months in patients undergoing supportive periodontal therapy (SPT). METHOD AND MATERIALS Prior to the clinical application, the particle size and abrasion level of EPAP were compared to glycine air-polishing powder (GPAP) ex vivo. Subsequently, 40 chronic periodontitis patients previously enrolled in SPT were randomly assigned into two groups for the treatment with subgingival EPAP or repeated scaling and root planing (SRP). At baseline (BL), bleeding on probing positive (BOP+) sites with probing pocket depth (PPD) of ≥ 4 mm but no detectable calculus were defined as study sites. During SPT, these sites were either treated by EPAP or SRP at BL, 3, and 6 months (3M, 6M). When indicated, additional SRP was provided. Plaque Index, BOP, PPD, clinical attachment level (CAL), and subgingival plaque were evaluated at BL and 6M. RESULTS EPAP yielded lower abrasiveness and smaller particle sizes when compared to GPAP. In 38 patients completing the study, EPAP and SRP resulted in significant reductions of BOP% (EPAP, 40.45%; SRP, 42.53%), PPD (EPAP, -0.67; SRP, -0.68), and increase of CAL (EPAP, 0.48; SRP, 0.61) while at 6M no statistically significant between-group differences were observed (P > .05). Microbiologic evaluation revealed minor shifts in the composition of the subgingival biofilm without influence on periodontopathogenic bacteria. CONCLUSION The subgingival use of EPAP by means of an air-polishing device may be considered safe and may lead to comparable clinical and microbiologic outcomes to those obtained with SRP. CLINICAL RELEVANCE The subgingival use of EPAP appears to represent a promising modality for the removal of subgingival biofilm during SPT.