6 resultados para Michigan League

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lake-effect snow is an important constraint on ecological and socio-economic systems near the North American Great Lakes. Little is known about the Holocene history of lake-effect snowbelts, and it is difficult to decipher how lake-effect snowfall abundance affected ecosystem development. We conducted oxygen-isotope analysis of calcite in lake-sediment cores from northern Lower Michigan to infer Holocene climatic variation and assess snowbelt development. The two lakes experience the same synoptic-scale climatic systems, but only one of them (Huffman Lake) receives a significant amount of lake-effect snow. A 177-cm difference in annual snowfall causes groundwater inflow at Huffman Lake to be 18O-depleted by 2.3‰ relative to O'Brien Lake. To assess when the lake-effect snowbelt became established, we compared calcite-δ18O profiles of the last 11,500 years from these two sites. The chronologies are based on accelerator-mass-spectrometry 14C ages of 11 and 17 terrestrial-plant samples from Huffman and O'Brien lakes, respectively. The values of δ18O are low at both sites from 11,500 to 9500 cal yr BP when the Laurentide Ice Sheet (LIS) exerted a dominant control over the regional climate and provided periodic pulses of meltwater to the Great Lakes basin. Carbonate δ18O increases by 2.6‰ at O'Brien Lake and by 1.4‰ at Huffman Lake between 9500 and 7000 cal yr BP, suggesting a regional decline in the proportion of runoff derived from winter precipitation. The Great Lakes snowbelt probably developed between 9500 and 5500 cal yr BP as inferred from the progressive 18O-depletion at Huffman Lake relative to O'Brien Lake, with the largest increase of lake-effect snow around 7000 cal yr BP. Lake-effect snow became possible at this time because of increasing contact between the Great Lakes and frigid arctic air. These changes resulted from enhanced westerly flow over the Great Lakes as the LIS collapsed, and from rapidly rising Great Lakes levels during the Nipissing Transgression. The δ18O difference between Huffman and O'Brien lakes declines after 5500 cal yr BP, probably because of a northward shift of the polar vortex that brought increasing winter precipitation to the entire region. However, δ18O remains depleted at Huffman Lake relative to O'Brien Lake because of the continued production of lake-effect snow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continental evaporation is a significant and dynamic flux within the atmospheric water budget, but few methods provide robust observational constraints on the large-scale hydroclimatological and hydroecological impacts of this ‘recycled-water' flux. We demonstrate a geospatial analysis that provides such information, using stable isotope data to map the distribution of recycled water in shallow aquifers downwind from Lake Michigan. The δ2H and δ18O values of groundwater in the study region decrease from south to north, as expected based on meridional gradients in climate and precipitation isotope ratios. In contrast, deuterium excess (d = δ2H − 8 × δ18O) values exhibit a significant zonal gradient and finer-scale spatially patterned variation. Local d maxima occur in the northwest and southwest corners of the Lower Peninsula of Michigan, where ‘lake-effect' precipitation events are abundant. We apply a published model that describes the effect of recycling from lakes on atmospheric vapor d values to estimate that up to 32% of recharge into individual aquifers may be derived from recycled Lake Michigan water. Applying the model to geostatistical surfaces representing mean d values, we estimate that between 10% and 18% of the vapor evaporated from Lake Michigan is re-precipitated within downwind areas of the Lake Michigan drainage basin. Our approach provides previously unavailable observational constraints on regional land-atmosphere water fluxes in the Great Lakes Basin and elucidates patterns in recycled-water fluxes that may influence the biogeography of the region. As new instruments and networks facilitate enhanced spatial monitoring of environmental water isotopes, similar analyses can be widely applied to calibrate and validate water cycle models and improve projections of regional hydroecological change involving the coupled lake-atmosphere-land system. Read More: http://www.esajournals.org/doi/abs/10.1890/ES12-00062.1

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1Recent studies demonstrated the sensitivity of northern forest ecosystems to changes in the amount and duration of snow cover at annual to decadal time scales. However, the consequences of snowfall variability remain uncertain for ecological variables operating at longer time scales, especially the distributions of forest communities. 2The Great Lakes region of North America offers a unique setting to examine the long-term effects of variable snowfall on forest communities. Lake-effect snow produces a three-fold gradient in annual snowfall over tens of kilometres, and dramatic edaphic variations occur among landform types resulting from Quaternary glaciations. We tested the hypothesis that these factors interact to control the distributions of mesic (dominated by Acer saccharum, Tsuga canadensis and Fagus grandifolia) and xeric forests (dominated by Pinus and Quercus spp.) in northern Lower Michigan. 3We compiled pre-European-settlement vegetation data and overlaid these data with records of climate, water balance and soil, onto Landtype Association polygons in a geographical information system. We then used multivariate adaptive regression splines to model the abundance of mesic vegetation in relation to environmental controls. 4Snowfall is the most predictive among five variables retained by our model, and it affects model performance 29% more than soil texture, the second most important variable. The abundance of mesic trees is high on fine-textured soils regardless of snowfall, but it increases with snowfall on coarse-textured substrates. Lake-effect snowfall also determines the species composition within mesic forests. The weighted importance of A. saccharum is significantly greater than of T. canadensis or F. grandifolia within the lake-effect snowbelt, whereas T. canadensis is more plentiful outside the snowbelt. These patterns are probably driven by the influence of snowfall on soil moisture, nutrient availability and fire return intervals. 5Our results imply that a key factor dictating the spatio-temporal patterns of forest communities in the vast region around the Great Lakes is how the lake-effect snowfall regime responds to global change. Snowfall reductions will probably cause a major decrease in the abundance of ecologically and economically important species, such as A. saccharum.