85 resultados para Mhc Molecules
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Immune reactions to drugs can cause a variety of diseases involving the skin, liver, kidney, lungs, and other organs. Beside immediate, IgE-mediated reactions of varying degrees (urticaria to anaphylactic shock), many drug hypersensitivity reactions appear delayed, namely hours to days after starting drug treatment, showing a variety of clinical manifestations from solely skin involvement to fulminant systemic diseases which may be fatal. Immunohistochemical and functional studies of drug-specific T cells in patients with delayed reactions confirmed a predominant role for T cells in the onset and maintenance of immune-mediated delayed drug hypersensitivity reactions (type IV reactions). In these reactions, drug-specific CD4+ and CD8+ T cells are stimulated by drugs through their T cell receptors (TCR). Drugs can stimulate T cells in two ways: they can act as haptens and bind covalently to larger protein structures (hapten-carrier model), inducing a specific immune response. In addition, they may accidentally bind in a labile, noncovalent way to a particular TCR of the whole TCR repertoire and possibly also major histocompatibility complex (MHC)-molecules - similar to their pharmacologic action. This seems to be sufficient to reactivate certain, probably in vivo preactivated T cells, if an additional interaction of the drug-stimulated TCR with MHC molecules occurs. The mechanism was named pharmacological interaction of a drug with (immune) receptor and thus termed the p-i concept. This new concept may explain the frequent skin symptoms in drug hypersensitivity to oral or parenteral drugs. Furthermore, the various clinical manifestations of T cell-mediated drug hypersensitivity may be explained by distinct T cell functions leading to different clinical phenotypes. These data allowed a subclassification of the delayed hypersensitivity reactions (type IV) into T cell reactions which, by releasing certain cytokines and chemokines, preferentially activate and recruit monocytes (type IVa), eosinophils (type IVb), or neutrophils (type IVd).
Resumo:
Drug hypersensitivity research has progressed enormously in recent years, and a greater understanding of mechanisms has contributed to improved drug safety. Progress has been made in genetics, enabling personalized medicine for certain drugs, and in understanding drug interactions with the immune system. In a recent meeting in Rome, the clinical, chemical, pharmacologic, immunologic, and genetic aspects of drug hypersensitivity were discussed, and certain aspects are briefly summarized here. Small chemicals, including drugs, can induce immune reactions by binding as a hapten to a carrier protein. Park (Liverpool, England) demonstrated (1) that drug haptens bind to protein in patients in a highly restricted manner and (2) that irreversibly modified carrier proteins are able to stimulate CD4(+) and CD8(+) T cells from hypersensitive patients. Drug haptens might also stimulate cells of the innate immune system, in particular dendritic cells, and thus give rise to a complex and complete immune reaction. Many drugs do not have hapten-like characteristics but might gain them on metabolism (so-called prohaptens). The group of Naisbitt found that the stimulation of dendritic cells and T cells can occur as a consequence of the transformation of a prohapten to a hapten in antigen-presenting cells and as such explain the immune-stimulatory capacity of prohaptens. The striking association between HLA-B alleles and the development of certain drug reactions was discussed in detail. Mallal (Perth, Australia) elegantly described a highly restricted HLA-B∗5701-specific T-cell response in abacavir-hypersensitive patients and healthy volunteers expressing HLA-B∗5701 but not closely related alleles. Expression of HLA-B∗1502 is a marker known to be necessary but not sufficient to predict carbamazepine-induced Stevens-Johnson syndrome/toxic epidermal necrolysis in Han Chinese. The group of Chen and Hong (Taiwan) described the possible "missing link" because they showed that the presence of certain T-cell receptor (TCR) clonotypes was necessary to elicit T-cell responses to carbamazepine. The role of TCRs in drug binding was also emphasized by Pichler (Bern, Switzerland). Following up on their "pharmacological interactions of drugs with immune receptors" concept (p-i concept), namely that drugs can bind directly to TCRs, MHC molecules, or both and thereby stimulate T cells, they looked for drug-binding sites for the drug sulfamethoxazole in drug-specific TCRs: modeling revealed up to 7 binding sites on the CDR3 and CDR2 regions of TCR Vα and Vβ. Among many other presentations, the important role of regulatory T cells in drug hypersensitivity was addressed.
Resumo:
In clinical routine, adverse drug reactions (ADR) are common, and they should be included in the differential diagnosis in all patients undergoing drug treatment. Only part of those ADR are immune-mediated hypersensitivity reactions and thus true drug allergies. Far more common are non-immune-mediated ADR, e.g. due to the pharmacological properties of the drug or to the individual predisposition of the patient (enzymopathies, cytokine dysbalance, mast cell hyperreactivity). In true drug allergiesT cell- and immunoglobulin E (lgE)-mediated reactions dominate the clinical presentation. T cell-mediated ADR usually have a delayed appearance and include skin eruptions in most cases. Nevertheless, it should not be forgotten that they may involve systemic T cell activation and thus take a severe, sometimes lethal turn. Clinical danger signs are involvement of mucosal surfaces, blistering within the exanthematous skin areas and systemic symptoms, e.g. fever or malaise. Drug presentation via antigen-presenting cells to T cells can either involve the classical pathway of haptenization of endogenous proteins or be directly mediated via noncovalent binding to immune receptors (MHC molecules or T cell receptors), the so-called p-i concept. Flare-up reactions during the acute phase of T cell-mediated ADR should not be mistaken for true drug allergies, as they only occur in the setting of a highly activated T cell pool. IgE-mediated ADR are less frequent and involve mast cells and/or basophils as peripheral effector cells. Recent data suggest that certain patients with drug allergy have a preexistent sensitization although they have never been exposed to the culprit drug, probably due to cross-reactivity. Thus, allergic drug reactions on first encounter are possible. In general, the extent of cross-reactivity is higher in IgE-compared to T cell-mediated ADR. Based on a specific ethnic background and only for severe T cell-mediated ADR to certain drugs, a strong HLA association has been established recently.
Resumo:
Immune responses against intestinal microbiota contribute to the pathogenesis of inflammatory bowel diseases (IBD) and involve CD4(+) T cells, which are activated by major histocompatibility complex class II (MHCII) molecules on antigen-presenting cells (APCs). However, it is largely unexplored how inflammation-induced MHCII expression by intestinal epithelial cells (IEC) affects CD4(+) T cell-mediated immunity or tolerance induction in vivo. Here, we investigated how epithelial MHCII expression is induced and how a deficiency in inducible epithelial MHCII expression alters susceptibility to colitis and the outcome of colon-specific immune responses. Colitis was induced in mice that lacked inducible expression of MHCII molecules on all nonhematopoietic cells, or specifically on IECs, by continuous infection with Helicobacter hepaticus and administration of interleukin (IL)-10 receptor-blocking antibodies (anti-IL10R mAb). To assess the role of interferon (IFN)-γ in inducing epithelial MHCII expression, the T cell adoptive transfer model of colitis was used. Abrogation of MHCII expression by nonhematopoietic cells or IECs induces colitis associated with increased colonic frequencies of innate immune cells and expression of proinflammatory cytokines. CD4(+) T-helper type (Th)1 cells - but not group 3 innate lymphoid cells (ILCs) or Th17 cells - are elevated, resulting in an unfavourably altered ratio between CD4(+) T cells and forkhead box P3 (FoxP3)(+) regulatory T (Treg) cells. IFN-γ produced mainly by CD4(+) T cells is required to upregulate MHCII expression by IECs. These results suggest that, in addition to its proinflammatory roles, IFN-γ exerts a critical anti-inflammatory function in the intestine which protects against colitis by inducing MHCII expression on IECs. This may explain the failure of anti-IFN-γ treatment to induce remission in IBD patients, despite the association of elevated IFN-γ and IBD.
Resumo:
Posttraumatic stress disorder (PTSD) and circulating cellular adhesion molecules (CAMs) predict cardiovascular risk. We hypothesized a positive relationship between PTSD caused by myocardial infarction (MI) and soluble CAMs. We enrolled 22 post-MI patients with interviewer-rated PTSD and 22 post-MI patients with no PTSD. At 32±6months after index MI, all patients were re-scheduled to undergo the Clinician-Administered PTSD Scale (CAPS) interview and had blood collected to assess soluble CAMs at rest and after the CAPS interview. Relative to patients with no PTSD, those with PTSD had significantly higher levels of soluble vascular cellular adhesion molecule (sVCAM)-1 and intercellular adhesion molecule (sICAM)-1 at rest and, controlling for resting CAM levels, significantly higher sVCAM-1 and sICAM-1 after the interview. Greater severity of PTSD predicted significantly higher resting levels of sVCAM-1 and soluble P-selectin in patients with PTSD. At follow-up, patients with persistent PTSD (n=15) and those who had remitted (n=7) did not significantly differ in CAM levels at rest and after the interview; however, both these groups had significantly higher sVCAM-1 and sICAM-1 at rest and also after the interview compared to patients with no PTSD. Elevated levels of circulating CAMs might help explain the psychophysiologic link of PTSD with cardiovascular risk.
Resumo:
Intraperitoneal larval infection (alveolar echinococcosis, AE) with Echinococcus multilocularis in mice impairs host immunity. Metacestode metabolites may modulate immunity putatively via dendritic cells. During murine AE, a relative increase of peritoneal DCs (pe-DCs) in infected mice (AE-pe-DCs; 4% of total peritoneal cells) as compared to control mice (naive pe-DCs; 2%) became apparent in our study. The differentiation of AE-pe-DCs into TGF-beta-expressing cells and the higher level of IL-4 than IFN-gamma/IL-2 mRNA expression in AE-CD4+pe-T cells indicated a Th2 orientation. Analysis of major accessory molecule expression on pe-DCs from AE-infected mice revealed that CD80 and CD86 were down-regulated on AE-pe-DCs, while ICAM-1(CD54) remained practically unchanged. Moreover, AE-pe-DCs had a weaker surface expression of MHC class II (Ia) molecules as compared to naive pe-DCs. The gene expression level of molecules involved in MHC class II (Ia) synthesis and formation of MHC class II (Ia)-peptide complexes were down-regulated. In addition, metacestodes excreted/secreted (E/S) or vesicle-fluid (V/F) antigens were found to alter MHC class II molecule expression on the surface of BMDCs. Finally, conversely to naive pe-DCs, an increasing number of AE-pe-DCs down-regulated Con A-induced proliferation of naive CD4+pe-T cells. These findings altogether suggested that TGF-beta-expressing immature AE-pe-DCs might play a significant role in the generation of a regulatory immune response within the peritoneal cavity of AE-infected mice.
Resumo:
Intraperitoneal proliferation of the metacestode stage of Echinococcus multilocularis in experimentally infected mice is followed by an impaired host immune response favoring parasite survival. We here demonstrate that infection in chronically infected mice was associated with a 3-fold increase of the percentages of CD4+ and CD8+ peritoneal T (pT) cells compared to uninfected controls. pT cells of infected mice expressed high levels of IL-4 mRNA, while only low amounts of IFN-gamma mRNA were detected, suggesting that a Th2-biased immune response predominated the late stage of disease. Peritoneal dendritic cells from infected mice (AE-pDCs) expressed high levels of TGF-beta mRNA and very low levels of IL-10 and IL-12 (p40) mRNA, and the expression of surface markers for DC-maturation such as MHC class II (Ia) molecules, CD80, CD86 and CD40 was down-regulated. In contrast to pDCs from non-infected mice, AE-pDCs did not enhance Concanavalin A (ConA)-induced proliferation when added to CD4+ pT and CD8+ pT cells of infected and non-infected mice, respectively. In addition, in the presence of a constant number of pDCs from non-infected mice, the proliferation of CD4+ pT cells obtained from infected animals to stimulation with ConA was lower when compared to the responses of CD4+ pT cells obtained from non-infected mice. This indicated that regulatory T cells (Treg) may interfere in the complex immunological host response to infection. Indeed, a subpopulation of regulatory CD4+ CD25+ pT cells isolated from E. multilocularis-infected mice reduced ConA-driven proliferation of CD4+ pT cells. The high expression levels of Foxp3 mRNA by CD4+ and CD8+ pT cells suggested that subpopulations of regulatory CD4+ Foxp3+ and CD8+ Foxp3+ T cells were involved in modulating the immune responses within the peritoneal cavity of E. multilocularis-infected mice.