20 resultados para Metals at high temperatures

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the use of high resolution CT to radiologically define teeth filling material properties in terms of Hounsfield units after high temperature exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We tested the hypothesis that light activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is inhibited by moderately elevated temperature through an effect on Rubisco activase. When cotton (Gossypium hirsutum L.) or wheat (Triticum aestivum L.) leaf tissue was exposed to increasing temperatures in the light, activation of Rubisco was inhibited above 35 and 30°C, respectively, and the relative inhibition was greater for wheat than for cotton. The temperature-induced inhibition of Rubisco activation was fully reversible at temperatures below 40°C. In contrast to activation state, total Rubisco activity was not affected by temperatures as high as 45°C. Nonphotochemical fluorescence quenching increased at temperatures that inhibited Rubisco activation, consistent with inhibition of Calvin cycle activity. Initial and maximal chlorophyll fluorescence were not significantly altered until temperatures exceeded 40°C. Thus, electron transport, as measured by Chl fluorescence, appeared to be more stable to moderately elevated temperatures than Rubisco activation. Western-blot analysis revealed the formation of high-molecular-weight aggregates of activase at temperatures above 40°C for both wheat and cotton when inhibition of Rubisco activation was irreversible. Physical perturbation of other soluble stromal enzymes, including Rubisco, phosphoribulokinase, and glutamine synthetase, was not detected at the elevated temperatures. Our evidence indicates that moderately elevated temperatures inhibit light activation of Rubisco via a direct effect on Rubisco activase.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Climate models predict more frequent and more severe extreme events (e.g., heat waves, extended drought periods, flooding) in many regions for the next decades. The impact of adverse environmental conditions on crop plants is ecologically and economically relevant. This review is focused on drought and heat effects on physiological status and productivity of agronomically important plants. Stomatal opening represents an important regulatory mechanism during drought and heat stress since it influences simultaneously water loss via transpiration and CO2 diffusion into the leaf apoplast which further is utilized in photosynthesis. Along with the reversible short-term control of stomatal opening, stomata and leaf epidermis may produce waxy deposits and irreversibly down-regulate the stomatal conductance and non-stomatal transpiration. As a consequence photosynthesis will be negatively affected. Rubisco activase—a key enzyme in keeping the Calvin cycle functional—is heat-sensitive and may become a limiting factor at elevated temperature. The accumulated reactive oxygen species (ROS) during stress represent an additional challenge under unfavorable conditions. Drought and heat cause accumulation of free amino acids which are partially converted into compatible solutes such as proline. This is accompanied by lower rates of both nitrate reduction and de novo amino acid biosynthesis. Protective proteins (e.g., dehydrins, chaperones, antioxidant enzymes or the key enzyme for proline biosynthesis) play an important role in leaves and may be present at higher levels under water deprivation or high temperatures. On the whole plant level, effects on long-distance translocation of solutes via xylem and phloem and on leaf senescence (e.g., anticipated, accelerated or delayed senescence) are important. The factors mentioned above are relevant for the overall performance of crops under drought and heat and must be considered for genotype selection and breeding programs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Zr-in-rutile geothermometer is potentially a widely applicable tool to estimate peak metamorphic temperatures in rocks from diverse geological settings. In order to evaluate its usefulness and reliability to record and preserve high temperatures in granulite facies rocks, rutile from UHT rocks was investigated to assess different mechanisms of Zr (re-)distribution following cooling from high temperature. Granulite facies paragneisses from the lowermost part of the Ivrea Zone, Italy, incorporated as thin sheets into the extensive basaltic body of the Mafic Complex were selected for this study. The results show that Zr-in-rutile thermometry, if properly applied, is well suited to identify and study UHT terranes as it preserves a record of temperatures up to 1190 °C, although the thermometer is susceptible to partial post-peak metamorphic resetting by Zr diffusion. Texturally homogeneous rutile grains preserve Zr concentrations corresponding to temperatures of prograde rutile growth. Diverse rutile textures and relationships between some rutile host grains and included or adjacent Zr-bearing phases bear testimony to varying mechanisms of partial redistribution and resetting of Zr in rutile during cooling and link Zr-in-rutile temperatures to different steps of the metamorphic evolution. Rutile grains that equilibrated their Zr concentrations at temperatures above 1070 °C (i.e. 1.1 wt% Zr) could not retain all Zr in the rutile structure during cooling and exsolved baddeleyite (ZrO2). By subsequent reaction of baddeleyite exsolution lamellae with SiO2, zircon needles formed before the system finally closed at 650–700 °C without significant net loss of Zr from the whole host rutile grain. By reintegration of zircon exsolution needles, peak metamorphic temperatures of up to 1190 °C are derived for the studied rocks, which demonstrates the suitability of this solution thermometer to record UHT conditions and also confirms the extraordinary geological setting of the lowermost part of the Ivrea Zone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Agricultural workers are exposed to various risks, including chemical agents, noise, and many other factors. One of the most characteristic and least known risk factors is constituted by the microclimatic conditions in the different phases of work (in field, in greenhouse, etc). A typical condition is thermal stress due to high temperatures during harvesting operations in open fields or in greenhouses. In Italy, harvesting is carried out for many hours during the day, mainly in the summer, with temperatures often higher than 30 degrees C. According to ISO 7243, these conditions can be considered dangerous for workers' health. The aim of this study is to assess the risks of exposure to microclimatic conditions (heat) for fruit and vegetable harvesters in central Italy by applying methods established by international standards. In order to estimate the risk for workers, the air temperature, radiative temperature, and air speed were measured using instruments in conformity with ISO 7726. Thermodynamic parameters and two more subjective parameters, clothing and the metabolic heat production rate related to the worker's physical activity, were used to calculate the predicted heat strain (PHS) for the exposed workers in conformity with ISO 7933. Environmental and subjective parameters were also measured for greenhouse workers, according to ISO 7243, in order to calculate the wet-bulb globe temperature (WBGT). The results show a slight risk for workers during manual harvesting in the field. On the other hand, the data collected in the greenhouses show that the risk for workers must not be underestimated. The results of the study show that, for manual harvesting work in climates similar to central Italy, it is essential to provide plenty of drinking water and acclimatization for the workers in order to reduce health risks. Moreover, the study emphasizes that the possible health risks for greenhouse workers increase from the month of April through July.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Forest fires play a key role in the global carbon cycle and thus, can affect regional and global climate. Although fires in extended areas of Russian boreal forests have a considerable influence on atmospheric greenhouse gas and soot concentrations, estimates of their impact on climate are hampered by a lack of data on the history of forest fires. Especially regions with strong continental climate are of high importance due to an intensified development of wildfires. In this study we reconstruct the fire history of Southern Siberia during the past 750 years using ice-core based nitrate, potassium, and charcoal concentration records from Belukha glacier in the continental Siberian Altai. A period of exceptionally high forest-fire activity was observed between AD 1600 and 1680, following an extremely dry period AD 1540-1600. Ice-core pollen data suggest distinct forest diebacks and the expansion of steppe in response to dry climatic conditions. Coherence with a paleoenvironmental record from the 200 km distant Siberian lake Teletskoye shows that the vegetational shift AD 1540-1680, the increase in fire activity AD 1600-1680, and the subsequent recovery of forests AD 1700 were of regional significance. Dead biomass accumulation in response to drought and high temperatures around AD 1600 probably triggered maximum forest-fire activity AD 1600-1680. The extreme dry period in the 16th century was also observed at other sites in Central Asia and is possibly associated with a persistent positive mode of the Pacific Decadal Oscillation (PDO). No significant increase in biomass burning occurred in the Altai region during the last 300 years, despite strongly increasing temperatures and human activities. Our results imply that precipitation changes controlled fire-regime and vegetation shifts in the Altai region during the past 750 years. We conclude that high sensitivity of ecosystems to occasional decadal-scale drought events may trigger unprecedented environmental reorganizations under global-warming conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An approach for the determination of atomization energies based on the extrapolated difference technique in the framework of Knudsen effusion mass spectrometry is proposed. Its essence is the use of thermodynamic data for the determination of the appearance energy of fragment ions of a reference and a special mathematical treatment of the ionization efficiency functions. The advantages of this approach are demonstrated for the cases of incongruently vaporizing lanthanide bromides that suffer from decomposition or disproportionation at high temperatures. The atomization energies for SmBr2 (7.78±0.12 eV), EuBr2 (7.51±0.11 eV), YbBr2 (7.25±0.13 eV), SmBr3 (11.09±0.10 eV), and YbBr3 (10.23±0.09 eV) molecules have been determined for the first time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The production rate of right-handed neutrinos from a Standard Model plasma at a temperature above a hundred GeV is evaluated up to NLO in Standard Model couplings. The results apply in the so-called relativistic regime, referring parametrically to a mass M ~ πT, generalizing thereby previous NLO results which only apply in the non-relativistic regime M ≫ πT. The non-relativistic expansion is observed to converge for M ≳ 15T, but the smallness of any loop corrections allows it to be used in practice already for M ≳ 4T. In the latter regime any non-covariant dependence of the differential rate on the spatial momentum is shown to be mild. The loop expansion breaks down in the ultrarelativistic regime M ≪ πT, but after a simple mass resummation it nevertheless extrapolates reasonably well towards a result obtained previously through complete LPM resummation, apparently confirming a strong enhancement of the rate at high temperatures (which facilitates chemical equilibration). When combined with other ingredients the results may help to improve upon the accuracy of leptogenesis computations operating above the electroweak scale.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND In recent years, the occurrence and the relevance of Mycoplasma hyopneumoniae infections in suckling pigs has been examined in several studies. Whereas most of these studies were focused on sole prevalence estimation within different age groups, follow-up of infected piglets or assessment of pathological findings, none of the studies included a detailed analysis of individual and environmental risk factors. Therefore, the aim of the present study was to investigate the frequency of M. hyopneumoniae infections in suckling pigs of endemically infected herds and to identify individual risk factors potentially influencing the infection status of suckling pigs at the age of weaning. RESULTS The animal level prevalence of M. hyopneumoniae infections in suckling pigs examined in three conventional pig breeding herds was 3.6% (41/1127) at the time of weaning. A prevalence of 1.2% was found in the same pigs at the end of their nursery period. In a multivariable Poisson regression model it was found that incidence rate ratios (IRR) for suckling pigs are significantly lower than 1 when teeth grinding was conducted (IRR: 0.10). Moreover, high temperatures in the piglet nest during the first two weeks of life (occasionally >40°C) were associated with a decrease of the probability of an infection (IRR: 0.23-0.40). Contrary, the application of PCV2 vaccines to piglets was associated with an increased infection risk (IRR: 9.72). CONCLUSIONS Since single infected piglets are supposed to act as initiators for the transmission of this pathogen in nursery and fattening pigs, the elimination of the risk factors described in this study should help to reduce the incidence rate of M. hyopneumoniae infections and thereby might contribute to a reduced probability of high prevalences in older pigs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Connus sous le nom populaire de palafittes, les habitats préhistoriques construits sur les rives des lacs subalpins du Néolithique à l’aube de l’âge du Fer (entre 5300 et 700 av. J.-C.) offrent des informations exceptionnelles sur l’évolution culturelle d’une importante région européenne, grâce à la préservation remarquable des matériaux organiques, en particulier du bois. À partir de la deuxième moitié du XXe siècle, le perfectionnement des techniques de fouille subaquatiques et de la dendrochronologie permettront la construction d’un schéma chronologique précis pour l’Europe nord-alpine. Les recherches contribueront à des observations d’ordre écologique à l’échelle locale et régionale et à l’identification des rythmes de développement des villages. Sous l’égide de l'UNESCO, les années 2010 verront la constitution d’un inventaire vaste et uniforme des sites préhistoriques des lacs circumalpins, classés Patrimoine culturel mondial en juin 2011. De nombreux objets préhistoriques, romains et médiévaux ont été découverts entre 2003 et 2010, au Schnidejoch, un col des Alpes bernoises occidentales à 2756 m d’altitude, à la frontière entre les cantons de Berne et du Valais. Les hautes températures de l'été 2003 ont provoqué la fonte d'un petit champ de glace et mis en lumière les vestiges. Les recherches ont été programmées à la suite d’une série d’informations fournies par des randonneurs. Les objets en matière organique (bois, écorce de bouleau, cuir, fibres végétales) revêtent une très grande importance car ils ont permis l’obtention de plus d’une cinquantaine de datations radiocarbone ; elles indiquent le passage du col entre la moitié du Ve millénaire av. J.-C. et l’année 1000 de notre ère. En outre, les séries de datations suggèrent l’alternance de périodes de praticabilité et d’inaccessibilité du col. Le Schnidejoch est actuellement le plus ancien témoignage de la traversée des Alpes, reliant l‘Oberland bernois par les vallées de la Simme et du Rhône.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to compare the sea-surface conditions in the Black Sea during the Holocene and Eemian, sapropelic parts of marine core 22-GC3 (42°13.53′N/36°29.55′E, 838 m water depth) were studied for organic-walled dinoflagellate cyst content. The record shows a change from freshwater/brackish assemblages (Pyxidinopsis psilata, Spiniferites cruciformis, and Caspidinium rugosum) to more marine assemblages (Lingulodinium machaerophorum and Spiniferites ramosus complex) during each interglacial, due to the inflow of saline Mediterranean water. The lacustrine–marine transitions in 22-GC3 occurred at ~ 8.3 cal kyr BP during the early Holocene and ~ 128 kyr BP during the early Eemian, slightly later compared to the onset of interglacial conditions on the adjacent land. Dinoflagellate cyst assemblages reveal higher sea-surface salinity (~ 28–30) (e.g. Spiniferites pachydermus, Bitectatodinium tepikiense, and Spiniferites mirabilis) around ~ 126.5–121 kyr BP in comparison to the Holocene (~ 15–20) as well as relatively high sea-surface temperature (e.g. Tuberculodinium vancampoae, S. pachydermus, and S. mirabilis) especially at ~ 127.6–125.3 kyr BP. Establishment of high sea-surface salinity during the Eemian correlates very well with reconstructed relatively high global sea-level and is explained as a combined effect of increased Mediterranean supply and high temperatures at the beginning of the last interglacial. The observed changes in the dinocyst record highlight the importance of nutrients for the composition of the Eemian and Holocene dinocyst assemblages.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

South Tyrol is a region that has been often affected by various mountain hazards such as floods, flash floods, debris flows, rock falls, and snow avalanches. Furthermore, areas located in lower altitudes are often influenced by high temperatures and heat waves. Climate change is expected to influence the frequency, magnitude, and spatial extent of these natural phenomena. For this reason, local authorities and other stakeholders are in need of tools that can enable them to reduce the risk posed by these processes. In the present study, a variety of methods are applied at local level in different places in South Tyrol that aim at: (1) the assessment of future losses caused by the occurrence of debris flows by using a vulnerability curve, (2) the assessment of social vulnerability based on the risk awareness of the exposed people to floods, and (3) the assessment of spatial exposure and social vulnerability of the exposed population to heat waves. The results show that, in South Tyrol, the risk to a number of hazards can be reduced by: (1) improving documentation for past events in order to improve existing vulnerability curves and the assessment of future losses, (2) raising citizens' awareness and responsibility to improve coping capacity to floods, and (3) extending heat wave early warning systems to more low-lying areas of South Tyrol.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rates for lepton number washout in extensions of the Standard Model containing right-handed neutrinos are key ingredients in scenarios for baryogenesis through leptogenesis. We relate these rates to real-time correlation functions at finite temperature, without making use of any particle approximations. The relations are valid to quadratic order in neutrino Yukawa couplings and to all orders in Standard Model couplings. They take into account all spectator processes, and apply both in the symmetric and in the Higgs phase of the electroweak theory. We use the relations to compute washout rates at next-to-leading order in g, where g denotes a Standard Model gauge or Yukawa coupling, both in the non-relativistic and in the relativistic regime. Even in the non-relativistic regime the parametrically dominant radiative corrections are only suppressed by a single power of g. In the non-relativistic regime radiative corrections increase the washout rate by a few percent at high temperatures, but they are of order unity around the weak scale and in the relativistic regime.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fermion boundary conditions play a relevant role in revealing the confinement mechanism of N=1 supersymmetric Yang-Mills theory with one compactified space-time dimension. A deconfinement phase transition occurs for a sufficiently small compactification radius, equivalent to a high temperature in the thermal theory where antiperiodic fermion boundary conditions are applied. Periodic fermion boundary conditions, on the other hand, are related to the Witten index and confinement is expected to persist independently of the length of the compactified dimension. We study this aspect with lattice Monte Carlo simulations for different values of the fermion mass parameter that breaks supersymmetry softly. We find a deconfined region that shrinks when the fermion mass is lowered. Deconfinement takes place between two confined regions at large and small compactification radii, that would correspond to low and high temperatures in the thermal theory. At the smallest fermion masses we find no indication of a deconfinement transition. These results are a first signal for the predicted continuity in the compactification of supersymmetric Yang-Mills theory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Enrichment of 13C in SOM with soil depth is related to interacting processes influenced by temperature and precipitation. Our objectives were to derive climate effects on patterns of vertical δ13C values of soil organic matter (SOM) while minimizing the effect of confounding variables. We investigated vertical changes in δ13C values of SOM in 1-cm depth intervals in silvicultural mature beech (Fagus sylvatica L.) forest ecosystems in northern Rhineland-Palatinate across gradients of MAT (7.9 to 9.7 °C mean annual temperature) and MAP (607 to 1085 mm mean annual precipitation) in winter 2011. Forest stands (n = 10) were chosen based on data sets provided by the Rhineland-Palatinate Forest Administration so that variations in these gradients occurred while other environmental factors like physico-chemical soil properties, tree species, stand age, exposition and precipitation (for the temperature gradient) or temperature (for the precipitation gradient) did not differ among study sites. From litter down to the mineral soil at 10 cm depth, soil organic carbon (SOC) content decreased (47.5 ± SE 0.1% to 2.5 ± 0.1%) while the δ13C values increased (− 29.4 ± 0.1‰ to − 26.1 ± 0.1‰). Litter of sites under higher MAP/lower MAT had lower δ13C values which was in line with literature data on climate driven plant physiological process. To compare the dimension of the vertical 13C enrichment, δ13C values were regressed linearly against log-transformed carbon contents yielding absolute values of these slopes (beta). Beta values ranged between 0.6 and 4.5 (range of r from − 0.7 to − 1.0; p < 0.01). Due to an assumed decay continuum and similar variations of δ13C values in litter and in 10 cm depth, we conclude that effects on isotope composition in the Oi layer continue vertically and therefore, δ13C values in litter do not solely control beta values. Beta values decreased with increasing MAT (r = − 0.83; p < 0.05). Reduced soil moisture and therefore both, reduced microbial activity and reduced downward transport of microbial cycled DOM (=13C enriched) might be responsible for less pronounced δ13C depth profiles in case of high temperatures. Greater C:N ratios (lower degradability) of the litter under higher temperatures likely contributed to these depth trends. Beta values increased with increasing MAP (r = 0.73; p < 0.05). We found decreasing C:N ratios in the mineral soil that possibly indicates higher decomposition under higher precipitation. Exclusion of the organic layers from linear regressions indicated a stronger impact of MAP on the development of δ13C depth profiles. Our results confirm temperature and precipitation effects on δ13C depth profiles and indicate stronger 13C enrichment under lower MAT/higher MAP. Therefore, time series of vertical δ13C depth profiles might provide insights into climate change effects.