18 resultados para Metallographic microstructure

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical characteristics of the human cornea depends on the mechanical balance between the intra-ocular pressure and intrinsic tissue stiffness. A wide range of ophthalmic surgical procedures alter corneal biomechanics to induce local or global curvature changes for the correction of visual acuity. Due to the large number of surgical interventions performed every day, a deeper understanding of corneal biomechanics is needed to improve the safety of these procedures and medical devices. The aim of this study is to propose a biomechanical model of the human cornea, based on stromal microstructure. The constitutive mechanical law includes collagen fiber distribution based on X-ray scattering analysis, collagen cross-linking, and fiber uncrimping. Our results showed that the proposed model reproduced inflation and extensiometry experimental data [Elsheikh et al., Curr. Eye Res., 2007; Elsheikh et al., Exp. Eye Res., 2008] successfully. The mechanical properties obtained for different age groups demonstrated an increase in collagen cross-linking for older specimens. In future work such a model could be used to simulate non-symmetric interventions, and provide better surgical planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical quality of the human eye mainly depends on the refractive performance of the cornea. The shape of the cornea is a mechanical balance between intraocular pressure and tissue intrinsic stiffness. Several surgical procedures in ophthalmology alter the biomechanics of the cornea to provoke local or global curvature changes for vision correction. Legitimated by the large number of surgical interventions performed every day, the demand for a deeper understanding of corneal biomechanics is rising to improve the safety of procedures and medical devices. The aim of our work is to propose a numerical model of corneal biomechanics, based on the stromal microstructure. Our novel anisotropic constitutive material law features a probabilistic weighting approach to model collagen fiber distribution as observed on human cornea by Xray scattering analysis (Aghamohammadzadeh et. al., Structure, February 2004). Furthermore, collagen cross-linking was explicitly included in the strain energy function. Results showed that the proposed model is able to successfully reproduce both inflation and extensiometry experimental data (Elsheikh et. al., Curr Eye Res, 2007; Elsheikh et. al., Exp Eye Res, May 2008). In addition, the mechanical properties calculated for patients of different age groups (Group A: 65-79 years; Group B: 80-95 years) demonstrate an increased collagen cross-linking, and a decrease in collagen fiber elasticity from younger to older specimen. These findings correspond to what is known about maturing fibrous biological tissue. Since the presented model can handle different loading situations and includes the anisotropic distribution of collagen fibers, it has the potential to simulate clinical procedures involving nonsymmetrical tissue interventions. In the future, such mechanical model can be used to improve surgical planning and the design of next generation ophthalmic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alterations of brain structure and function have been associated with psychomotor retardation in major depressive disorder (MDD). However, the association of motor behaviour and white matter integrity of motor pathways in MDD is unclear. The aim of the present study was to first investigate structural connectivity of white matter motor pathways in MDD. Second, we explore the relation of objectively measured motor activity and white matter integrity of motor pathways in MDD. Therefore, 21 patients with MDD and 21 healthy controls matched for age, gender, education and body mass index underwent diffusion tensor imaging and 24 hour actigraphy (measure of the activity level) the same day. Applying a probabilistic fibre tracking approach we extracted connection pathways between the dorsolateral prefrontal cortex (dlPFC), the rostral anterior cingulate cortex (rACC), the pre-supplementary motor area (pre-SMA), the SMA-proper, the primary motor cortex (M1), the caudate nucleus, the putamen, the pallidum and the thalamus. Patients had lower activity levels and demonstrated increased mean diffusivity (MD) in pathways linking left pre-SMA and SMA-proper, and right SMA-proper and M1. Exploratory analyses point to a positive association of activity level and mean-fractional anisotropy in the right rACC-pre-SMA connection in MDD. Only MDD patients with low activity levels had a negative linear association of activity level and mean-MD in the left dlPFC-pre-SMA connection. Our results point to structural alterations of cortico-cortical white matter motor pathways in MDD. Altered white matter organisation of rACC-pre-SMA and dlPFC-pre-SMA pathways may contribute to movement initiation in MDD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND The medial forebrain bundle (MFB) is a key structure of the reward system and connects the ventral tegmental area (VTA) with the nucleus accumbens (NAcc), the medial and lateral orbitofrontal cortex (mOFC, lOFC) and the dorsolateral prefrontal cortex (dlPFC). Previous diffusion tensor imaging (DTI) studies in major depressive disorder point to white matter alterations of regions which may be incorporated in the MFB. Therefore, it was the aim of our study to probe white matter integrity of the MFB using a DTI-based probabilistic fibre tracking approach. METHODS 22 patients with major depressive disorder (MDD) (12 melancholic-MDD patients, 10 non-melancholic-MDD patients) and 21 healthy controls underwent DTI scans. We used a bilateral probabilistic fibre tracking approach to extract pathways between the VTA and NACC, mOFC, lOFC, dlPFC respectively. Mean fractional anisotropy (FA) values were used to compare structural connectivity between groups. RESULTS Mean-FA did not differ between healthy controls and all MDD patients. Compared to healthy controls melancholic MDD-patients had reduced mean-FA in right VTA-lOFC and VTA-dlPFC connections. Furthermore, melancholic-MDD patients had lower mean-FA than non-melancholic MDD-patients in the right VTA-lOFC connection. Mean-FA of these pathways correlated negatively with depression scale rating scores. LIMITATIONS Due to the small sample size and heterogeneous age group comparisons between melancholic and non-melancholic MDD-patients should be regarded as preliminary. CONCLUSIONS Our results suggest that the melancholic subtype of MDD is characterized by white matter microstructure alterations of the MFB. White matter microstructure is associated with both depression severity and anhedonia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution quantitative computed tomography (HRQCT)-based analysis of spinal bone density and microstructure, finite element analysis (FEA), and DXA were used to investigate the vertebral bone status of men with glucocorticoid-induced osteoporosis (GIO). DXA of L1–L3 and total hip, QCT of L1–L3, and HRQCT of T12 were available for 73 men (54.6±14.0years) with GIO. Prevalent vertebral fracture status was evaluated on radiographs using a semi-quantitative (SQ) score (normal=0 to severe fracture=3), and the spinal deformity index (SDI) score (sum of SQ scores of T4 to L4 vertebrae). Thirty-one (42.4%) subjects had prevalent vertebral fractures. Cortical BMD (Ct.BMD) and thickness (Ct.Th), trabecular BMD (Tb.BMD), apparent trabecular bone volume fraction (app.BV/TV), and apparent trabecular separation (app.Tb.Sp) were analyzed by HRQCT. Stiffness and strength of T12 were computed by HRQCT-based nonlinear FEA for axial compression, anterior bending and axial torsion. In logistic regressions adjusted for age, glucocorticoid dose and osteoporosis treatment, Tb.BMD was most closely associated with vertebral fracture status (standardized odds ratio [sOR]: Tb.BMD T12: 4.05 [95% CI: 1.8–9.0], Tb.BMD L1–L3: 3.95 [1.8–8.9]). Strength divided by cross-sectional area for axial compression showed the most significant association with spine fracture status among FEA variables (2.56 [1.29–5.07]). SDI was best predicted by a microstructural model using Ct.Th and app.Tb.Sp (r2=0.57, p<0.001). Spinal or hip DXA measurements did not show significant associations with fracture status or severity. In this cross-sectional study of males with GIO, QCT, HRQCT-based measurements and FEA variables were superior to DXA in discriminating between patients of differing prevalent vertebral fracture status. A microstructural model combining aspects of cortical and trabecular bone reflected fracture severity most accurately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we investigated the scaling relations between trabecular bone volume fraction (BV/TV) and parameters of the trabecular microstructure at different skeletal sites. Cylindrical bone samples with a diameter of 8mm were harvested from different skeletal sites of 154 human donors in vitro: 87 from the distal radius, 59/69 from the thoracic/lumbar spine, 51 from the femoral neck, and 83 from the greater trochanter. μCT images were obtained with an isotropic spatial resolution of 26μm. BV/TV and trabecular microstructure parameters (TbN, TbTh, TbSp, scaling indices (< > and σ of α and αz), and Minkowski Functionals (Surface, Curvature, Euler)) were computed for each sample. The regression coefficient β was determined for each skeletal site as the slope of a linear fit in the double-logarithmic representations of the correlations of BV/TV versus the respective microstructure parameter. Statistically significant correlation coefficients ranging from r=0.36 to r=0.97 were observed for BV/TV versus microstructure parameters, except for Curvature and Euler. The regression coefficients β were 0.19 to 0.23 (TbN), 0.21 to 0.30 (TbTh), −0.28 to −0.24 (TbSp), 0.58 to 0.71 (Surface) and 0.12 to 0.16 (<α>), 0.07 to 0.11 (<αz>), −0.44 to −0.30 (σ(α)), and −0.39 to −0.14 (σ(αz)) at the different skeletal sites. The 95% confidence intervals of β overlapped for almost all microstructure parameters at the different skeletal sites. The scaling relations were independent of vertebral fracture status and similar for subjects aged 60–69, 70–79, and >79years. In conclusion, the bone volume fraction–microstructure scaling relations showed a rather universal character.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND White matter microstructure alterations of limbic and reward pathways have been reported repeatedly for depressive episodes in major depressive disorder (MDD) and bipolar disorder (BD). However, findings during remission are equivocal. It was the aim of this study to investigate if white matter microstructure changes during the time course of clinical remission. METHODS Fifteen depressed patients (11 MDD, 4 BD) underwent diffusion-weighted MRI both during depression, and during remission following successful antidepressive treatment (average time interval between scans=6 months). Fractional anisotropy (FA) was sampled along reconstructions of the supero-lateral medial forebrain bundle (slMFB), the cingulum bundle (CB), the uncinate fasciculus (UF), the parahippocampal cingulum (PHC) and the fornix. Repeated measures ANCOVAs controlling for the effect of age were calculated for each tract. RESULTS There was a significant main effect of time (inter-scan interval) for mean-FA for the right CB and for the left PHC. For both pathways there was a significant time×age interaction. In the right CB, FA increased in younger patients, while FA decreased in older patients. In the left PHC, a reverse pattern was seen. FA changes in the right CB correlated positively with symptom reductions. Mean-FA of UF, slMFB and fornix did not change between the two time points. LIMITATIONS All patients were medicated, sample size, and lack of control group. CONCLUSIONS Right CB and left PHC undergo age-dependent plastic changes during the course of remission and may serve as a state marker in depression. UF, slMFB and FO microstructure remains stable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White matter connects different brain areas and applies electrical insulation to the neuron’s axons with myelin sheaths in order to enable quick signal transmission. Due to its modulatory properties in signal conduction, white matter plays an essential role in learning, cognition and psychiatric disorders (Fields, 2008a). In respect thereof, the non-invasive investigation of white matter anatomy and function in vivo provides the unique opportunity to explore the most complex organ of our body. Thus, the present thesis aimed to apply a multimodal neuroimaging approach to investigate different white matter properties in psychiatric and healthy populations. On the one hand, white matter microstructural properties were investigated in a psychiatric population; on the other hand, white matter metabolic properties were assessed in healthy adults providing basic information about the brain’s wiring entity. As a result, three research papers are presented here. The first paper assessed the microstructural properties of white matter in relation to a frequent epidemiologic finding in schizophrenia. As a result, reduced white matter integrity was observed in patients born in summer and autumn compared to patients born in winter and spring. Despite the large genetic basis of schizophrenia, accumulating evidence indicates that environmental exposures may be implicated in the development of schizophrenia (A. S. Brown, 2011). Notably, epidemiologic studies have shown a 5–8% excess of births during winter and spring for patients with schizophrenia on the Northern Hemisphere at higher latitudes (Torrey, Miller, Rawlings, & Yolken, 1997). Although the underlying mechanisms are unclear, the seasonal birth effect may indicate fluctuating environmental risk factors for schizophrenia. Thus, exposure to harmful factors during foetal development may result in the activation of pathologic neural circuits during adolescence or young adulthood, increasing the risk of schizophrenia (Fatemi & Folsom, 2009). While white matter development starts during the foetal period and continues until adulthood, its major development is accomplished by the age of two years (Brody, Kinney, Kloman, & Gilles, 1987; Huang et al., 2009). This indicates a vulnerability period of white matter that may coincide with the fluctuating environmental risk factors for schizophrenia. Since microstructural alterations of white matter in schizophrenia are frequently observed, the current study provided evidence for the neurodevelopmental hypothesis of schizophrenia. In the second research paper, the perfusion of white matter showed a positive correlation between white matter microstructure and its perfusion with blood across healthy adults. This finding was in line with clinical studies indicating a tight coupling between cerebral perfusion and WM health across subjects (Amann et al., 2012; Chen, Rosas, & Salat, 2013; Kitagawa et al., 2009). Although relatively little is known about the metabolic properties of white matter, different microstructural properties, such as axon diameter and myelination, might be coupled with the metabolic demand of white matter. Furthermore, the ability to detect perfusion signal in white matter was in accordance with a recent study showing that technical improvements, such as pseudo-continuous arterial spin labeling, enabled the reliable detection of white matter perfusion signal (van Osch et al., 2009). The third paper involved a collaboration within the same department to assess the interrelation between functional connectivity networks and their underlying structural connectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital light, fluorescence and electron microscopy in combination with wavelength-dispersive spectroscopy were used to visualize individual polymers, air voids, cement phases and filler minerals in a polymer-modified cementitious tile adhesive. In order to investigate the evolution and processes involved in formation of the mortar microstructure, quantifications of the phase distribution in the mortar were performed including phase-specific imaging and digital image analysis. The required sample preparation techniques and imaging related topics are discussed. As a form of case study, the different techniques were applied to obtain a quantitative characterization of a specific mortar mixture. The results indicate that the mortar fractionates during different stages ranging from the early fresh mortar until the final hardened mortar stage. This induces process-dependent enrichments of the phases at specific locations in the mortar. The approach presented provides important information for a comprehensive understanding of the functionality of polymer-modified mortars.