103 resultados para Mesoscopic samples
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
http://www.sciencedirect.com/science/article/pii/S0045653510008891
Online radiocarbon measurements of small samples using Elemental Analyzer and MICADAS gas ion source
Resumo:
A liquid chromatography tandem mass spectrometry (LC-MS/MS) confirmatory method for the simultaneous determination of nine corticosteroids in liver, including the four MRL compounds listed in Council Regulation 37/2010, was developed. After an enzymatic deconjugation and a solvent extraction of the liver tissue, the resulting solution was cleaned up through an SPE Oasis HLB cartridge. The analytes were then detected by liquid chromatography-negative-ion electrospray tandem mass spectrometry, using deuterium-labelled internal standards. The procedure was validated as a quantitative confirmatory method according to the Commission Decision 2002/657/EC criteria. The results showed that the method was suitable for statutory residue testing regarding the following performance characteristics: instrumental linearity, specificity, precision (repeatability and intra-laboratory reproducibility), recovery, decision limit (CCα), detection capability (CCβ) and ruggedness. All the corticosteroids can be detected at a concentration around 1 μg kg(-1); the recoveries were above 62% for all the analytes. Repeatability and reproducibility (within-laboratory reproducibility) for all the analytes were below 7.65% and 15.5%, respectively.
Resumo:
Molecular genetic testing is commonly used to confirm clinical diagnoses of inherited urea cycle disorders (UCDs); however, conventional mutation screenings encompassing only the coding regions of genes may not detect disease-causing mutations occurring in regulatory elements and introns. Microarray-based target enrichment and next-generation sequencing now allow more-comprehensive genetic screening. We applied this approach to UCDs and combined it with the use of DNA bar codes for more cost-effective, parallel analyses of multiple samples.
Resumo:
Cutaneous T-cell lymphomas (CTCLs) are malignancies of skin-homing lymphoid cells, which have so far not been investigated thoroughly for common oncogenic mutations. We screened 90 biopsy specimens from CTCL patients (41 mycosis fungoides, 36 Sézary syndrome, and 13 non-mycosis fungoides/Sézary syndrome CTCL) for somatic mutations using OncoMap technology. We detected oncogenic mutations for the RAS pathway in 4 of 90 samples. One mycosis fungoides and one pleomorphic CTCL harbored a KRAS(G13D) mutation; one Sézary syndrome and one CD30(+) CTCL harbored a NRAS(Q61K) amino acid change. All mutations were found in stage IV patients (4 of 42) who showed significantly decreased overall survival compared with stage IV patients without mutations (P = .04). In addition, we detected a NRAS(Q61K) mutation in the CTCL cell line Hut78. Knockdown of NRAS by siRNA induced apoptosis in mutant Hut78 cells but not in CTCL cell lines lacking RAS mutations. The NRAS(Q61K) mutation sensitized Hut78 cells toward growth inhibition by the MEK inhibitors U0126, AZD6244, and PD0325901. Furthermore, we found that MEK inhibitors exclusively induce apoptosis in Hut78 cells. Taken together, we conclude that RAS mutations are rare events at a late stage of CTCL, and our preclinical results suggest that such late-stage patients profit from MEK inhibitors.
Resumo:
After the discovery of synthetic cannabimimetic substances in 'Spice'-like herbal mixtures marketed as 'incense' or 'plant fertilizer' the active compounds have been declared as controlled substances in several European countries. As expected, a monitoring of new herbal mixtures which continue to appear on the market revealed that shortly after control measures have been taken by legal authorities, other compounds were added to existing mixtures and to new products. Several compounds of the aminoalkylindole type have been detected so far in herbal mixtures but still their consumption cannot be detected by commonly used drug-screening procedures, encouraging drug users to substitute cannabis with those products. There is a increasing demand on the part of police authorities, hospitals and psychiatrists for detection and quantification of synthetic cannabinoids in biological samples originating from psychiatric inpatients, emergency units or assessment of fitness to drive. Therefore, a liquid chromatography-tandem mass spectrometry method after liquid-liquid extraction for the quantitation of JWH-015, JWH-018, JWH-073, JWH-081, JWH 200, JWH-250, WIN 55,212-2 and methanandamide and the detection of JWH-019 and JWH-020 in human serum has been developed and fully validated according to guidelines for forensic toxicological analyses. The method was successfully applied to 101 serum samples from 80 subjects provided by hospitals, detoxification and therapy centers, forensic psychiatric centers and police authorities. Fifty-seven samples or 56.4% were found positive for at least one aminoalkylindole. JWH-019, JWH-020, JWH-200, WIN 55,212-2 and methanandamide were not detected in any of the analyzed samples.
Resumo:
Methane and nitrous oxide are important greenhouse gases which show a strong increase in atmospheric mixing ratios since pre-industrial time as well as large variations during past climate changes. The understanding of their biogeochemical cycles can be improved using stable isotope analysis. However, high-precision isotope measurements on air trapped in ice cores are challenging because of the high susceptibility to contamination and fractionation. Here, we present a dry extraction system for combined CH4 and N2O stable isotope analysis from ice core air, using an ice grating device. The system allows simultaneous analysis of δD(CH4) or δ13C(CH4), together with δ15N(N2O), δ18O(N2O) and δ15N(NO+ fragment) on a single ice core sample, using two isotope mass spectrometry systems. The optimum quantity of ice for analysis is about 600 g with typical "Holocene" mixing ratios for CH4 and N2O. In this case, the reproducibility (1σ ) is 2.1‰ for δD(CH4), 0.18‰ for δ13C(CH4), 0.51‰ for δ15N(N2O), 0.69‰ for δ18O(N2O) and 1.12‰ for δ15N(NO+ fragment). For smaller amounts of ice the standard deviation increases, particularly for N2O isotopologues. For both gases, small-scale intercalibrations using air and/or ice samples have been carried out in collaboration with other institutes that are currently involved in isotope measurements of ice core air. Significant differences are shown between the calibration scales, but those offsets are consistent and can therefore be corrected for.