11 resultados para Mediterranean river basins
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The European Water Framework Directive (WFD) requires a status assessment of all water bodies. If that status is deteriorated, the WFD urges the identification of its potential causes in order to be able to suggest appropriate management measures. The instrument of investigative monitoring allows for such identification, provided that appropriate tools are available to link the observed effects to causative stressors, while unravelling confounding factors. In this chapter, the state of the art of status and causal pathway assessment is described for the major stressors responsible for the deterioration of European water bodies, i.e. toxicity, acidification, salinisation, eutrophication and oxygen depletion, parasites and pathogens, invasive alien species, hydromorphological degradation, changing water levels as well as sediments and suspended matter. For each stressor, an extensive description of the potential effects on the ecological status is given. Secondly, stressor-specific abiotic and biotic indicators are described that allow for a first indication of probable causes, based on the assessment of available monitoring data. Subsequently, more advanced tools for site-specific confirmation of stressors at hand are discussed. Finally, the local status assessments are put into the perspective of the risk for downstream stretches in order to be able to prioritise stressors and to be able to select appropriate measures for mitigation of the risks resulting from these stressors.
Resumo:
The identification of plausible causes for water body status deterioration will be much easier if it can build on available, reliable, extensive and comprehensive biogeochemical monitoring data (preferably aggregated in a database). A plausible identification of such causes is a prerequisite for well-informed decisions on which mitigation or remediation measures to take. In this chapter, first a rationale for an extended monitoring programme is provided; it is then compared to the one required by the Water Framework Directive (WFD). This proposal includes a list of relevant parameters that are needed for an integrated, a priori status assessment. Secondly, a few sophisticated statistical tools are described that subsequently allow for the estiation of the magnitude of impairment as well as the likely relative importance of different stressors in a multiple stressed environment. The advantages and restrictions of these rather complicated analytical methods are discussed. Finally, the use of Decision Support Systems (DSS) is advocated with regard to the specific WFD implementation requirements.
Resumo:
The aim of the present article is to contribute to the debate on the role of research in sustainable management of water and related resources, based on experiences in the Upper Ewaso Ng’iro and Pangani river basins in East Africa. Both basins are characterised by humid, resource-rich highlands and extensive semi-arid lowlands, by growing demand for water and related resources, and by numerous conflicting stakeholder interests. Issues of scale and level, on the one hand, and the normative dimension of sustainability, on the other hand, are identified as key challenges for research that seeks to produce relevant and applicable results for informed decision-making. A multi-level and multi-stakeholder perspective, defined on the basis of three minimal principles, is proposed here as an approach to research for informed decision-making. Key lessons learnt from applying these principles in the two river basins are presented and discussed in the light of current debate.
Resumo:
Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a few legacy chemicals, many more anthropogenic chemicals can be detected simultaneously in our aquatic resources. However, exposure to chemical mixtures does not necessarily translate into adverse biological effects nor clearly shows whether mitigation measures are needed. Thus, the question which mixtures are present and which have associated combined effects becomes central for defining adequate monitoring and assessment strategies. Here we describe the vision of the international, EU-funded project SOLUTIONS, where three routes are explored to link the occurrence of chemical mixtures at specific sites to the assessment of adverse biological combination effects. First of all, multi-residue target and non-target screening techniques covering a broader range of anticipated chemicals co-occurring in the environment are being developed. By improving sensitivity and detection limits for known bioactive compounds of concern, new analytical chemistry data for multiple components can be obtained and used to characterise priority mixtures. This information on chemical occurrence will be used to predict mixture toxicity and to derive combined effect estimates suitable for advancing environmental quality standards. Secondly, bioanalytical tools will be explored to provide aggregate bioactivity measures integrating all components that produce common (adverse) outcomes even for mixtures of varying compositions. The ambition is to provide comprehensive arrays of effect-based tools and trait-based field observations that link multiple chemical exposures to various environmental protection goals more directly and to provide improved in situ observations for impact assessment of mixtures. Thirdly, effect-directed analysis (EDA) will be applied to identify major drivers of mixture toxicity. Refinements of EDA include the use of statistical approaches with monitoring information for guidance of experimental EDA studies. These three approaches will be explored using case studies at the Danube and Rhine river basins as well as rivers of the Iberian Peninsula. The synthesis of findings will be organised to provide guidance for future solution-oriented environmental monitoring and explore more systematic ways to assess mixture exposures and combination effects in future water quality monitoring.
Resumo:
This paper presents the first comprehensive analysis of sediment and dissolved load across an entire mountain range. We investigate patterns and rates of modern denudation of the European Alps based on a compilation of data about river loads and reservoir sedimentation from 202 drainage basins that are between ca. 1 to 10,000 km2 large. The study basins cover about 50% of the total area of the Alps. Modern glaciated basins have the highest sediment yields of up to 7000 t km− 2 a− 1, which are on average 5 to 10 times higher than in non-glaciated basins. Likewise sediment yield and glacial cover are positively correlated. Instead, relief is a relatively weak predictor of sediment yield. The strong glacial impact in the correlations is due to glacier recession since the 19th century as well as due to glacial conditioning during repeated Quaternary glaciations which have produced the strong transient state of the Alpine landscape. We suggest that this is the major cause for ca. 3 fold enhanced denudation of the western compared to the eastern Alps. Chemical denudation rates are highest in the external Alps dominated by carbonate sedimentary rocks, where they make up about one third of total denudation. The high rates cannot be explained without anhydrite dissolution. We estimated that only 45% of the sediments mobilized in headwaters are exported out off the Alps, most sediments being trapped in artificial reservoirs. The total amount of sediment annually trapped within the Alps equates to 43 Mt. When corrected for sediment storage, we obtain an area-weighted mean total denudation rate for the Alps of about 0.32 mm a− 1. The pre-dam rate might be as high as 0.42 mm a− 1. In total, ca. 35 plus 23 Mt of mass are exported each year out of the Alps as solids and solutes, respectively. These rates are not enough to out pace modern rock uplift. Nevertheless, pattern of sediment yield across the Alps coincides roughly with the intensity of glacial conditioning and modern rock uplift, supporting the hypothesis of an erosion-driven uplift of the Alps.
Resumo:
Historical reports from the 17th Century document two destructive tsunamis with runups exceeding 5 m, affecting proximal basins of Lake Lucerne (Switzerland). One event in AD 1601 is coeval with a strong nearby earthquake (MW ca 5.9), which caused extensive slope failures in many parts of the lake. The second event in AD 1687 is associated with an apparently spontaneous partial collapse of the Muota river delta. This study combines high-resolution bathymetry, reflection seismic and lithological data in order to document the sedimentary and morphological signatures of the two subaqueous mass movements that probably generated the observed tsunamis. Such mass movements are significant as a common sedimentation process and as natural hazard in fjord-type lakes and similar environments. The deposits, covering large parts of the basins with thicknesses reaching >10 m, consist of two subunits: A lower ‘massflow deposit’ contains variably deformed sediments from the source areas. Its emplacement affected pre-existing sediments, incorporating thin sediment slices into the deposit and increasing its volume. Deep-reaching deformation near This is an Accepted Article that has been peer-reviewed and approved for publication in the Sedimentology, but has yet to undergo copy-editing and proof correction.
Resumo:
SOLUTIONS (2013 to 2018) is a European Union Seventh Framework Programme Project (EU-FP7). The project aims to deliver a conceptual framework to support the evidence-based development of environmental policies with regard to water quality. SOLUTIONS will develop the tools for the identification, prioritisation and assessment of those water contaminants that may pose a risk to ecosystems and human health. To this end, a new generation of chemical and effect-based monitoring tools is developed and integrated with a full set of exposure, effect and risk assessment models. SOLUTIONS attempts to address legacy, present and future contamination by integrating monitoring and modelling based approaches with scenarios on future developments in society, economy and technology and thus in contamination. The project follows a solutions-oriented approach by addressing major problems of water and chemicals management and by assessing abatement options. SOLUTIONS takes advantage of the access to the infrastructure necessary to investigate the large basins of the Danube and Rhine as well as relevant Mediterranean basins as case studies, and puts major efforts on stakeholder dialogue and support. Particularly, the EU Water Framework Directive (WFD) Common Implementation Strategy (CIS) working groups, International River Commissions, and water works associations are directly supported with consistent guidance for the early detection, identification, prioritisation, and abatement of chemicals in the water cycle. SOLUTIONS will give a specific emphasis on concepts and tools for the impact and risk assessment of complex mixtures of emerging pollutants, their metabolites and transformation products. Analytical and effect-based screening tools will be applied together with ecological assessment tools for the identification of toxicants and their impacts. The SOLUTIONS approach is expected to provide transparent and evidence-based candidates or River Basin Specific Pollutants in the case study basins and to assist future review of priority pollutants under the WFD as well as potential abatement options.
Resumo:
Lake Butrint (39°47 N, 20°1 E) is a ca. 21 m deep, coastal lagoon located in SW Albania where finely-laminated sediments have been continuously deposited during the last millennia. The multi-proxy analysis (sedimentology, high-resolution elemental geochemistry and pollen) of a 12 m long sediment core, supported by seven AMS radiocarbon dates and 137Cs dating, enable a precise reconstruction of the environmental change that occurred in the central Mediterranean region during the last ∼4.5 cal kyrs BP. Sediments consist of triplets of authigenic carbonates, organic matter and clayey laminae. Fluctuations in the thickness and/or presence of these different types of seasonal laminae indicate variations in water salinity, organic productivity and runoff in the lake's catchment, as a result of the complex interplay of tectonics, anthropogenic forcing and climate variability. The progradation of the Pavllo river delta, favoured by variable human activity from the nearby ancient city of Butrint, led to the progressive isolation of this hydrological system from the Ionian Sea. The system evolved from an open bay to a restricted lagoon, which is consistent with archaeological data. An abrupt increase in mass-wasting activity between 1515 and 1450 BC, likely caused by nearby seismic activity, led to the accumulation of 24 homogenites, up to 17 cm thick. They have been deposited during the onset of finely laminated sedimentation, which indicates restricted, anoxic bottom water conditions and higher salinity. Periods of maximum water salinity, biological productivity, and carbonate precipitation coincide with warmer intervals, such as the early Roman Warm Period (RWP) (500 BC–0 AD), the Medieval Climate Anomaly (MCA) (800–1400 AD) and recent times (after 1800 AD). Conversely, lower salinity and more oxic conditions, with higher clastic input were recorded during 1400–500 BC, the Late Roman and the Early Medieval periods (0–800 AD) and during the Little Ice Age (1400–1800 AD). Hydrological fluctuations recorded in Butrint are in phase with most central and western Mediterranean records and correlate with NAO variability. In contrast, opposite hydrological patterns have been recorded in the Eastern Balkans and the Levant during the last millennium, emphasizing a complex spatial variability in the region. Phases of maximum settlement intensity in Butrint (Roman-Late Antique) coincide with warmer and/or stable climate periods (0–800 AD and MCA, respectively), indicating a long-term influence of climatic conditions on human activities. The Late Holocene sedimentary record of Lake Butrint demonstrates the complex interplay of climate variability, tectonics and human impact in the recent evolution of coastal Mediterranean regions.