41 resultados para Medicinal compound production by plant cell cultures,Natural sources of ephedrine

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we report on our study of the changes in biomass, lipid composition, and fermentation end products, as well as in the ATP level and synthesis rate in cultivated potato (Solanum tuberosum) cells submitted to anoxia stress. During the first phase of about 12 h, cells coped with the reduced energy supply brought about by fermentation and their membrane lipids remained intact. The second phase (12–24 h), during which the energy supply dropped down to 1% to 2% of its maximal theoretical normoxic value, was characterized by an extensive hydrolysis of membrane lipids to free fatty acids. This autolytic process was ascribed to the activation of a lipolytic acyl hydrolase. Cells were also treated under normoxia with inhibitors known to interfere with energy metabolism. Carbonyl-cyanide-4-trifluoromethoxyphenylhydrazone did not induce lipid hydrolysis, which was also the case when sodium azide or salicylhydroxamic acid were fed separately. However, the simultaneous use of sodium azide plus salicylhydroxamic acid or 2-deoxy-D-glucose plus iodoacetate with normoxic cells promoted a lipid hydrolysis pattern similar to that seen in anoxic cells. Therefore, a threshold exists in the rate of ATP synthesis (approximately 10 μmol g−1 fresh weight h−1), below which the integrity of the membranes in anoxic potato cells cannot be preserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scope of this work was to examine in vitro responses of lung cells to secondary organic aerosol (SOA) particles, under realistic ambient air and physiological conditions occurring when particles are inhaled by mammals, using a novel particle deposition chamber. The cell cultures included cell types that are representative for the inner surface of airways and alveoli and are the target cells for inhaled particles. The results demonstrate that an exposure to SOA at ambient-air concentrations of about 10(4) particles/cm(3) for 2 h leads to only moderate cellular responses. There is evidence for (i) cell type specific effects and for (ii) different effects of SOA originating from anthropogenic and biogenic precursors, i.e. 1,3,5-trimethylbenzene (TMB) and alpha-pinene, respectively. There was no indication for cytotoxic effects but for subtle changes in cellular functions that are essential for lung homeostasis. Decreased phagocytic activity was found in human macrophages exposed to SOA from alpha-pinene. Alveolar epithelial wound repair was affected by TMB-SOA exposure, mainly because of altered cell spreading and migration at the edge of the wound. In addition, cellular responses were found to correlate with particle number concentration, as interleukin-8 production was increased in pig explants exposed to TMB-SOA with high particle numbers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucocorticoids (GC) are potent anti-inflammatory and immunosuppressive steroid hormones, mainly produced by the adrenal glands. However, increasing evidence supports the idea of additional extra-adrenal sources of bioactive GC. The lung epithelium is constantly exposed to a plethora of antigenic stimuli, and local GC synthesis could contribute to limit uncontrolled immune reactions and tissue damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of di-cationic pentamidine-analogues against Toxoplama gondii (Rh- and Me49-background) was investigated. The 72 h-growth assays showed that the arylimidamide DB750 inhibited the proliferation of tachyzoites of T. gondii Rh and T. gondii Me49 with an IC(50) of 0.11 and 0.13 muM, respectively. Pre-incubation of fibroblast monolayers with 1 muM DB750 for 12 h and subsequent culture in the absence of the drug also resulted in a pronounced inhibiton of parasite proliferation. However, upon 5-6 days of drug exposure, T. gondii tachyzoites adapted to the compound and resumed proliferation up to a concentration of 1.2 muM. Out of a set of 32 di-cationic compounds screened for in vitro activity against T. gondii, the arylimidamide DB745, exhibiting an IC(50) of 0.03 muM and favourable selective toxicity was chosen for further studies. DB745 also inhibited the proliferation of DB750-adapted T. gondii (IC(50)=0.07 muM). In contrast to DB750, DB745 also had a profound negative impact on extracellular non-adapted T. gondii tachyzoites, but not on DB750-adapted T. gondii. Adaptation of T. gondii to DB745 (up to a concentration of 0.46 muM) was much more difficult to achieve and feasible only over a period of 110 days. In cultures infected with DB750-adapted T. gondii seemingly intact parasites could occasionally be detected by TEM. This illustrates the astonishing capacity of T. gondii tachyzoites to adapt to environmental changes, at least under in vitro conditions, and suggests that DB745 could be an interesting drug candidate for further assessments in appropriate in vivo models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tremendous application potential of nanosized materials stays in sharp contrast to a growing number of critical reports of their potential toxicity. Applications of in vitro methods to assess nanoparticles are severely limited through difficulties in exposing cells of the respiratory tract directly to airborne engineered nanoparticles. We present a completely new approach to expose lung cells to particles generated in situ by flame spray synthesis. Cerium oxide nanoparticles from a single run were produced and simultaneously exposed to the surface of cultured lung cells inside a glovebox. Separately collected samples were used to measure hydrodynamic particle size distribution, shape, and agglomerate morphology. Cell viability was not impaired by the conditions of the glovebox exposure. The tightness of the lung cell monolayer, the mean total lamellar body volume, and the generation of oxidative DNA damage revealed a dose-dependent cellular response to the airborne engineered nanoparticles. The direct combination of production and exposure allows studying particle toxicity in a simple and reproducible way under environmental conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elevated glucocorticoids are a key risk factor for metabolic diseases, and the glucocorticoid-activating enzyme 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1) represents a promising therapeutic target. We measured the potential of six traditional antidiabetic medicinal plants extracts to inhibit 11beta-HSD1 activity and glucocorticoid receptor (GR) activation in transfected HEK-293 cells. Leave extracts of Eriobotrya japonica preferentially inhibited 11beta-HSD1 over 11beta-HSD2. Extracts of roasted but not native coffee beans preferentially inhibited 11beta-HSD1 over 11beta-HSD2, emphasizing the importance of sample preparation. Thus, natural compounds inhibiting 11beta-HSD1 may contribute to the antidiabetic effect of the investigated plant extracts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Canine distemper virus (CDV) causes a chronic, demyelinating, progressive or relapsing neurological disease in dogs, because CDV persists in the CNS. Persistence of virulent CDV, such as the A75/17 strain has been reproduced in cell cultures where it is associated with a non-cytolytic infection with very limited cell-cell fusion. This is in sharp contrast to attenuated CDV infection in cell cultures, such as the Onderstepoort (OP) CDV strain, which produces extensive fusion activity and cytolysis. Fusion efficiency may be determined by the structure of the viral fusion protein per se but also by its interaction with other structural proteins of CDV. This was studied by combining genes derived from persistent and non-persistent CDV strains in transient transfection experiments. It was found that fusion efficiency was markedly attenuated by the structure of the fusion protein of the neurovirulent A75/17-CDV. Moreover, we showed that the interaction of the surface glycoproteins with the M protein of the persistent strain greatly influenced fusion activity. Site directed mutagenesis showed that the c-terminus of the M protein is of particular importance in this respect. Interestingly, although the nucleocapsid protein alone did not affect F/H-induced cell-cell fusion, maximal inhibition occurred when the latter was added to combined glycoproteins with matrix protein. Thus, the present study suggests that very limited fusogenicity in virulent CDV infection, which favours persistence by limiting cell destruction involves complex interactions between all viral structural proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heart rate variability (HRV) exhibits fluctuations characterized by a power law behavior of its power spectrum. The interpretation of this nonlinear HRV behavior, resulting from interactions between extracardiac regulatory mechanisms, could be clinically useful. However, the involvement of intrinsic variations of pacemaker rate in HRV has scarcely been investigated. We examined beating variability in spontaneously active incubating cultures of neonatal rat ventricular myocytes using microelectrode arrays. In networks of mathematical model pacemaker cells, we evaluated the variability induced by the stochastic gating of transmembrane currents and of calcium release channels and by the dynamic turnover of ion channels. In the cultures, spontaneous activity originated from a mobile focus. Both the beat-to-beat movement of the focus and beat rate variability exhibited a power law behavior. In the model networks, stochastic fluctuations in transmembrane currents and stochastic gating of calcium release channels did not reproduce the spatiotemporal patterns observed in vitro. In contrast, long-term correlations produced by the turnover of ion channels induced variability patterns with a power law behavior similar to those observed experimentally. Therefore, phenomena leading to long-term correlated variations in pacemaker cellular function may, in conjunction with extracardiac regulatory mechanisms, contribute to the nonlinear characteristics of HRV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiologic studies have shown correlations between morbidity and particles < or = 2.5 microm generated from pollution processes and manufactured nanoparticles. Thereby nanoparticles seem to play a specific role. The interaction of particles with the lung, the main pathway of undesired particle uptake, is poorly understood. In most studies investigating these interactions in vitro, particle deposition differs greatly from the in vivo situation, causing controversial results. We present a nanoparticle deposition chamber to expose lung cells mimicking closely the particle deposition conditions in the lung. In this new deposition chamber, particles are deposited very efficiently, reproducibly, and uniformly onto the cell culture, a key aspect if cell responses are quantified in respect to the deposited particle number. In situ analyses of the lung cells, e.g., the ciliary beat frequency, indicative of the defense capability of the cells, are complemented by off-line biochemical, physiological, and morphological cell analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anti-human leukocyte antigen class I (HLA I) antibodies were shown to activate several protein kinases in endothelial cells (ECs), which induces proliferation and cell survival. An important phenomenon in antibody-mediated rejection is the occurrence of interstitial edema. We investigated the effect of anti-HLA I antibodies on endothelial proliferation and permeability, as one possible underlying mechanism of edema formation. HLA I antibodies increased the permeability of cultured ECs isolated from umbilical veins. Anti-HLA I antibodies induced the production of vascular endothelial growth factor (VEGF) by ECs, which activated VEGF receptor 2 (VEGFR2) in an autocrine manner. Activated VEGFR2 led to a c-Src-dependent phosphorylation of vascular endothelial (VE)-cadherin and its degradation. Aberrant VE-cadherin expression resulted in impaired adherens junctions, which might lead to increased endothelial permeability. This effect was only observed after cross-linking of HLA I molecules by intact antibodies. Furthermore, our results suggest that increased endothelial proliferation following anti-HLA I treatment occurs via autocrine VEGFR2 activation. Our data indicate the ability of anti-HLA I to induce VEGF production in ECs. Transactivation of VEGFR2 leads to increased EC proliferation and paracellular permeability. The autocrine effect of VEGF on endothelial permeability might be an explanation for the formation of interstitial edema after transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to current knowledge, sexual development of the apicomplexan parasite Neospora caninum takes place in the canine intestine. However, to date there is no information on the interaction between the parasite and the canine intestinal epithelium, and, next to the clinical and in vivo research tools, an in vitro model comprised of canine intestinal cells infected with N. caninum would be very helpful for investigations at the cellular level. Following the isolation of cells of neonatal canine duodenum and growth of cell cultures to monolayers for 5-6 days, canine intestinal epithelial cells were exposed to cell culture-derived N. caninum tachyzoites and bradyzoites. The host cells remained viable during in vitro culture for an average of 2 wk. During this time span, N. caninum was found to readily adhere to any surface area of these cells, but infection took mostly place at sites where microvilli-like structures were missing, e.g., at the cell periphery, with tachyzoites exhibiting at least 3-4 times increased invasive capacities compared to bradyzoites. Once intracellular, parasites resided within a parasitophorous vacuole, moved toward the vicinity of the nucleus and the more distal portion of the epithelial cells, and proliferated to form vacuoles of not more than 2-4 parasites, which were surrounded by numerous mitochondria. Immunofluorescence staining and TEM of infected cells showed that the expression of cytokeratins and the structural integrity of desmosomes and tight junctions were not notably altered during infection. Furthermore, no changes could be detected in the alkaline phosphatase activities in cell culture supernatants of infected and noninfected cells. Canine duodenal epithelial cell cultures represent a useful tool for future studies on the characteristics of the intestinal phases of N. caninum infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fungal plant pathogens are common in natural communities where they affect plant physiology, plant survival, and biomass production. Conversely, pathogen transmission and infection may be regulated by plant community characteristics such as plant species diversity and functional composition that favor pathogen diversity through increases in host diversity while simultaneously reducing pathogen infection via increased variability in host density and spatial heterogeneity. Therefore, a comprehensive understanding of multi-host multi-pathogen interactions is of high significance in the context of biodiversity-ecosystem functioning. We investigated the relationship between plant diversity and aboveground obligate parasitic fungal pathogen (''pathogens'' hereafter) diversity and infection in grasslands of a long-term, large-scale, biodiversity experiment with varying plant species (1-60 species) and plant functional group diversity (1-4 groups). To estimate pathogen infection of the plant communities, we visually assessed pathogen-group presence (i.e., rusts, powdery mildews, downy mildews, smuts, and leaf-spot diseases) and overall infection levels (combining incidence and severity of each pathogen group) in 82 experimental plots on all aboveground organs of all plant species per plot during four surveys in 2006. Pathogen diversity, assessed as the cumulative number of pathogen groups on all plant species per plot, increased log-linearly with plant species diversity. However, pathogen incidence and severity, and hence overall infection, decreased with increasing plant species diversity. In addition, co-infection of plant individuals by two or more pathogen groups was less likely with increasing plant community diversity. We conclude that plant community diversity promotes pathogen-community diversity while at the same time reducing pathogen infection levels of plant individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To evaluate the origin and degree of activity of nitric oxide (NO) and matrix metalloproteinase (MMP) in explants of cranial cruciate ligaments (CCLs) obtained from dogs and cultured with and without inflammatory activators. SAMPLE POPULATION Tissue specimens obtained from 7 healthy adult Beagles that were (mean +/- SD) 4.5 +/- 0.5 years old and weighed 12.5 +/- 0.8 kg. PROCEDURE The CCLs were harvested immediately after dogs were euthanatized, and specimens were submitted for explant culture. Cultures were stimulated by incubation with a combination of interleukin-1, tumor necrosis factor-alpha, and lipopolysaccharide, or they were not stimulated. Culture supernatants were examined for production of NO nitrite-nitrate metabolites (NOts) and activity of MMP Cultured specimens were evaluated by use of immunohistochemical analysis to detect activity of inducible NO synthase (iNOS). RESULTS All ligament explants produced measurable amounts of NOts. Stimulated cultures produced significantly more NOts after incubation for 24 and 48 hours, compared with nonstimulated cultures. Production of MMP in supernatants after incubation for 48 hours was significantly higher in stimulated cultures than in nonstimulated cultures. Cells with positive staining for iNOS were detected on all slides. Positively stained cells were predominantly chondroid metaplastic. There was a significant difference in intensity of cell staining between stimulated and non-stimulated cultures. CONCLUSIONS AND CLINICAL RELEVANCE Explant cultures of intact CCLs obtained from dogs produce iNOS-induced NO. Stimulation of chondroid metaplastic cells in CCL of dogs by use of inflammatory activators can increase production of iNOS, NOts, and MMP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteogenesis imperfecta (OI) is a heritable connective tissue disease characterized by bone fragility and increased risk of fractures. Up to now, mutations in at least 18 genes have been associated with dominant and recessive forms of OI that affect the production or post-translational processing of procollagen or alter bone homeostasis. Among those, SERPINH1 encoding heat shock protein 47 (HSP47), a chaperone exclusive for collagen folding in the ER, was identified to cause a severe form of OI in dachshunds (L326P) as well as in humans (one single case with a L78P mutation). To elucidate the disease mechanism underlying OI in the dog model, we applied a range of biochemical assays to mutant and control skin fibroblasts as well as on bone samples. These experiments revealed that type I collagen synthesized by mutant cells had decreased electrophoretic mobility. Procollagen was retained intracellularly with concomitant dilation of ER cisternae and activation of the ER stress response markers GRP78 and phospho-eIF2α, thus suggesting a defect in procollagen processing. In line with the migration shift detected on SDS-PAGE of cell culture collagen, extracts of bone collagen from the OI dog showed a similar mobility shift, and on tandem mass spectrometry, the chains were post-translationally overmodified. The bone collagen had a higher content of pyridinoline than control dog bone. We conclude that the SERPINH1 mutation in this naturally occurring model of OI impairs how HSP47 acts as a chaperone in the ER. This results in abnormal post-translational modification and cross-linking of the bone collagen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The membrane glycoprotein podoplanin is expressed by several types of human cancers and might be associated with their malignant progression. Its exact biological function and molecular targets are unclear, however. Here, we assessed the relevance of tumor cell expression of podoplanin in cancer metastasis to lymph nodes, using a human MCF7 breast carcinoma xenograft model. We found that podoplanin expression promoted tumor cell motility in vitro and, unexpectedly, increased tumor lymphangiogenesis and metastasis to regional lymph nodes in vivo, without promoting primary tumor growth. Importantly, high cancer cell expression levels of podoplanin correlated with lymph node metastasis and reduced survival times in a large cohort of 252 oral squamous cell carcinoma patients. Based on comparative transcriptional profiling of tumor xenografts, we identified endothelin-1, villin-1, and tenascin-C as potential mediators of podoplanin-induced tumor lymphangiogenesis and metastasis. These unexpected findings identify a novel mechanism of tumor lymphangiogenesis and metastasis induced by cancer cell expression of podoplanin, suggesting that reagents designed to interfere with podoplanin function might be developed as therapeutics for patients with advanced cancer.