27 resultados para Mechanical compression testing
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Polyetheretherketone (PEEK) is a novel polymer with potential advantages for its use in demanding orthopaedic applications (e.g. intervertebral cages). However, the influence of a physiological environment on the mechanical stability of PEEK has not been reported. Furthermore, the suitability of the polymer for use in highly stressed spinal implants such as intervertebral cages has not been investigated. Therefore, a combined experimental and analytical study was performed to address these open questions. A quasi-static mechanical compression test was performed to compare the initial mechanical properties of PEEK-OPTIMA polymer in a dry, room-temperature and in an aqueous, 37 degrees C environment (n=10 per group). The creep behaviour of cylindrical PEEK polymer specimens (n=6) was measured in a simulated physiological environment at an applied stress level of 10 MPa for a loading duration of 2000 hours (12 weeks). To compare the biomechanical performance of different intervertebral cage types made from PEEK and titanium under complex loading conditions, a three-dimensional finite element model of a functional spinal unit was created. The elastic modulus of PEEK polymer specimens in a physiological environment was 1.8% lower than that of specimens tested at dry, room temperature conditions (P<0.001). The results from the creep test showed an average creep strain of less than 0.1% after 2000 hours of loading. The finite element analysis demonstrated high strain and stress concentrations at the bone/implant interface, emphasizing the importance of cage geometry for load distribution. The stress and strain maxima in the implants were well below the material strength limits of PEEK. In summary, the experimental results verified the mechanical stability of the PEEK-OPTIMA polymer in a simulated physiological environment, and over extended loading periods. Finite element analysis supported the use of PEEK-OPTIMA for load-bearing intervertebral implants.
Resumo:
PURPOSE: To evaluate multislice spiral computed tomography (MSCT) and magnetic resonance imaging (MRI) findings in hanging and manual strangulation cases and compare them with forensic autopsy results. MATERIALS AND METHODS: Postmortem MSCT and MRI of nine persons who died from hanging or manual strangulation were performed. The neck findings were compared with those discovered during forensic autopsy. In addition, two living patients underwent imaging and clinical examination following severe manual strangulation and near-hanging, respectively. For evaluation, the findings were divided into "primary" (strangulation mark and subcutaneous desiccation (i.e., soft-tissue thinning as a result of tissue fluids being driven out by mechanical compression) in hanging, and subcutaneous and intramuscular hemorrhage in manual strangulation) and "collateral" signs. The Wilcoxon two-tailed test was used for statistical analysis of the lymph node and salivary gland findings. RESULTS: In hanging, the primary and most frequent collateral signs were revealed by imaging. In manual strangulation, the primary findings were accurately depicted, with the exception of one slight hemorrhage. Apart from a vocal cord hemorrhage, all frequent collateral signs could be diagnosed radiologically. Traumatic lymph node hemorrhage (P = 0.031) was found in all of the manual strangulation cases. CONCLUSION: MSCT and MRI revealed strangulation signs concordantly with forensic pathology findings. Imaging offers a great potential for the forensic examination of lesions due to strangulation in both clinical and postmortem settings.
Resumo:
Poly(methyl methacrylate) (PMMA) is by far the most frequently used bone substitute material for vertebroplasty. However, there are serious complications, such as cement leakage and an increased fracture rate of the adjacent vertebral bodies. The latter may be related to the mechanical properties of the augmented segment within the osteoporotic spine. A possible counter-measure is prophylactic augmentation at additional levels, but this aggravates the risk for the patient. Introduction of pores is a possible method to reduce the inherent high stiffness of PMMA. This study investigates the effect of porosity on the mechanical properties of PMMA bone cement. Different fractions of a highly viscous liquid were mixed into the PMMA during preparation. An open-porous material with adjustable mechanical properties resulted after removal of the aqueous phase. Different radiopacifiers were admixed to investigate their suitability for vertebroplasty. The final material was characterized mechanically by compressive testing, microscopically and radiologically. In addition, the monomer release subsequent to hardening was measured by means of gas chromatography. The Young's modulus in compression could be varied between 2800 +/- 70 MPa and 120 +/- 150 MPa, and the compression ultimate strength between 170 +/- 5 MPa and 8 +/- 9 MPa for aqueous fractions ranging between 0 and 50% of volume. Only a slight decrease of the Young's modulus and small changes of ultimate strength were found when the mixing time was increased. An organic hydrophilic and lipophilic radiopacifier led to a higher Young's modulus of the porous material; however, the ultimate strength was not significantly affected by adding different radiopacifiers to the porous cement. The radiopacity was lost after washing the aqueous phase out of the pores. No separation occurred between the aqueous and the PMMA phase during injection into an open porous ceramic material. The monomer released was found to increase for increasing aqueous fractions, but remained comparable in magnitude to standard PMMA. This study demonstrates that a conventional PMMA can be modified to obtain a range of mechanical properties, including those of osteoporotic bone.
Resumo:
Mechanical thrombectomy in ischemic stroke is of increasing interest as it is a promising strategy for fast and efficient recanalization. Several thrombectomy devices have been introduced to the armentarium of mechanical thrombectomy. Currently, new devices are under development and are continuously added to the neurointerventional tool box. Each device advocated so far has a different design and mechanical properties in terms of thrombus-device interaction. Therefore, a systematic evaluation under standardized conditions in vivo of these new devices is needed. The purpose of this study was to evaluate the efficiency, thrombus-device interaction, and potential complications of the novel Phenox CRC for distal mechanical thrombectomy in vivo. The device was evaluated in an established animal model in the swine. Recanalization rate, thromboembolic events, vasospasm, and complications were assessed. Radiopaque thrombi (2 cm length) were used for the visualization of thrombus-device interaction during retrieval. The Phenox CRC (4 mm diameter) was assessed in 15 vessel occlusions. For every occlusion a maximum of 3 retrieval attempts were performed. Complete recanalization (TICI 3/TIMI 3) was achieved in 86.7% of vessel occlusions. In 66.7% (10/15), the first retrieval attempt was successful, and in 20% (3/15), the second attempt led to complete recanalization of the parent artery. In 2 cases (13.3%) thrombus retrieval was not successful (TICI 0/TIMI 0). In 1 case (6.7%) a minor embolic event occurred in a small side branch. No distal thromboembolic event was observed during the study. Thrombus-device interaction illustrated the entrapment of the thrombus by the microfilaments and the proximal cage of the device. No significant thrombus compression was observed. No vessel perforation, dissection, or fracture of the device occurred. In this small animal study, the Phenox CRC was a safe and effective device for mechanical thrombectomy. The unique design with a combination of microfilaments and proximal cage reduces thrombus compression with a consequently high recanalization and low complication rate.
Resumo:
Quantitative sensory tests are widely used in human research to evaluate the effect of analgesics and explore altered pain mechanisms, such as central sensitization. In order to apply these tests in clinical practice, knowledge of reference values is essential. The aim of this study was to determine the reference values of pain thresholds for mechanical and thermal stimuli, as well as withdrawal time for the cold pressor test in 300 pain-free subjects. Pain detection and pain tolerance thresholds to pressure, heat and cold were determined at three body sites: (1) lower back, (2) suprascapular region and (3) second toe (for pressure) or the lateral aspect of the leg (for heat and cold). The influences of gender, age, height, weight, body-mass index (BMI), body side of testing, depression, anxiety, catastrophizing and parameters of Short-Form 36 (SF-36) were analyzed by multiple regressions. Quantile regressions were performed to define the 5th, 10th and 25th percentiles as reference values for pain hypersensitivity and the 75th, 90th and 95th percentiles as reference values for pain hyposensitivity. Gender, age and/or the interaction of age with gender were the only variables that consistently affected the pain measures. Women were more pain sensitive than men. However, the influence of gender decreased with increasing age. In conclusion, normative values of parameters related to pressure, heat and cold pain stimuli were determined. Reference values have to be stratified by body region, gender and age. The determination of these reference values will now allow the clinical application of the tests for detecting abnormal pain reactions in individual patients.
Resumo:
Loading is important to maintain the balance of matrix turnover in the intervertebral disc (IVD). Daily cyclic diurnal assists in the transport of large soluble factors across the IVD and its surrounding circulation and applies direct and indirect stimulus to disc cells. Acute mechanical injury and accumulated overloading, however, could induce disc degeneration. Recently, there is more information available on how cyclic loading, especially axial compression and hydrostatic pressure, affects IVD cell biology. This review summarises recent studies on the response of the IVD and stem cells to applied cyclic compression and hydrostatic pressure. These studies investigate the possible role of loading in the initiation and progression of disc degeneration as well as quantifying a physiological loading condition for the study of disc degeneration biological therapy. Subsequently, a possible physiological/beneficial loading range is proposed. This physiological/beneficial loading could provide insight into how to design loading regimes in specific system for the testing of various biological therapies such as cell therapy, chemical therapy or tissue engineering constructs to achieve a better final outcome. In addition, the parameter space of 'physiological' loading may also be an important factor for the differentiation of stem cells towards most ideally 'discogenic' cells for tissue engineering purpose.
Resumo:
Increased fracture risk has been reported for the adjacent vertebral bodies after vertebroplasty. This increase has been partly attributed to the high Young's modulus of commonly used polymethylmethacrylate (PMMA). Therefore, a compliant bone cement of PMMA with a bulk modulus closer to the apparent modulus of cancellous bone has been produced. This compliant bone cement was achieved by introducing pores in the cement. Due to the reduced failure strength of that porous PMMA cement, cancellous bone augmented with such cement could deteriorate under dynamic loading. The aim of the present study was to assess the potential of acute failure, particle generation and mechanical properties of cancellous bone augmented with this compliant cement in comparison to regular cement. For this purpose, vertebral biopsies were augmented with porous- and regular PMMA bone cement, submitted to dynamic tests and compression to failure. Changes in Young's modulus and height due to dynamic loading were determined. Afterwards, yield strength and Young's modulus were determined by compressive tests to failure and compared to the individual composite materials. No failure occurred and no particle generation could be observed during dynamical testing for both groups. Height loss was significantly higher for the porous cement composite (0.53+/-0.21%) in comparison to the biopsies augmented with regular cement (0.16+/-0.1%). Young's modulus of biopsies augmented with porous PMMA was comparable to cancellous bone or porous cement alone (200-700 MPa). The yield strength of those biopsies (21.1+/-4.1 MPa) was around two times higher than for porous cement alone (11.6+/-3.3 MPa).
Resumo:
We have investigated the influence of long-term confined dynamic compression and surface motion under low oxygen tension on tissue-engineered cell-scaffold constructs. Porous polyurethane scaffolds (8 mm x 4 mm) were seeded with bovine articular chondrocytes and cultured under normoxic (21% O(2)) or hypoxic (5% O(2)) conditions for up to 4 weeks. By means of our joint-simulating bioreactor, cyclic axial compression (10-20%; 0.5 Hz) was applied for 1 h daily with a ceramic ball, which simultaneously oscillated over the construct surface (+/-25 degrees; 0.5 Hz). Culture under reduced oxygen tension resulted in an increase in mRNA levels of type II collagen and aggrecan, whereas the expression of type I collagen was down-regulated at early time points. A higher glycosaminoglycan content was found in hypoxic than in normoxic constructs. Immunohistochemical analysis showed more intense type II and weaker type I collagen staining in hypoxic than in normoxic cultures. Type II collagen gene expression was slightly elevated after short-term loading, whereas aggrecan mRNA levels were not influenced by the applied mechanical stimuli. Of importance, the combination of loading and low oxygen tension resulted in a further down-regulation of collagen type I mRNA expression, contributing to the stabilization of the chondrocytic phenotype. Histological results confirmed the beneficial effect of mechanical loading on chondrocyte matrix synthesis. Thus, mechanical stimulation combined with low oxygen tension is an effective tool for modulating the chondrocytic phenotype and should be considered when chondrocytes or mesenchymal stem cells are cultured and differentiated with the aim of generating cartilage-like tissue in vitro.
Resumo:
OBJECTIVE: The effects of mechanical deformation of intact cartilage tissue on chondrocyte biosynthesis in situ have been well documented, but the mechanotransduction pathways that regulate such phenomena have not been elucidated completely. The goal of this study was to examine the effects of tissue deformation on the morphology of a range of intracellular organelles which play a major role in cell biosynthesis and metabolism. DESIGN: Using chemical fixation, high pressure freezing, and electron microscopy, we imaged chondrocytes within mechanically compressed cartilage explants at high magnification and quantitatively and qualitatively assessed changes in organelle volume and shape caused by graded levels of loading. RESULTS: Compression of the tissue caused a concomitant reduction in the volume of the extracellular matrix (ECM), chondrocyte, nucleus, rough endoplasmic reticulum, and mitochondria. Interestingly, however, the Golgi apparatus was able to resist loss of intraorganelle water and retain a portion of its volume relative to the remainder of the cell. These combined results suggest that a balance between intracellular mechanical and osmotic gradients govern the changes in shape and volume of the organelles as the tissue is compressed. CONCLUSIONS: Our results lead to the interpretive hypothesis that organelle volume changes appear to be driven mainly by osmotic interactions while shape changes are mediated by structural factors, such as cytoskeletal interactions that may be linked to extracellular matrix deformations. The observed volume and shape changes of the chondrocyte organelles and the differential behavior between organelles during tissue compression provide evidence for an important mechanotransduction pathway linking translational and post-translational events (e.g., elongation and sulfation of glycosaminoglycans (GAGs) in the Golgi) to cell deformation.
Resumo:
Compression, tension and torsion tests were designed and completed successfully on a brushite and a precipitated hydroxyapatite cement in moist condition. Elastic and strength properties were measured for these three loading cases. For each cement, the full set of strength data was fitted to an isotropic Tsai-Wu criterion and the associated coefficients identified. Since the compressive Young's moduli were about 10% larger than the tensile moduli, the full set of elastic data of each cement was fitted to a conewise linear elastic model. Hysteresis of the stress-strain curves was also observed, indicating dissipation mechanisms within these cement microstructures. A comparison of the measured mechanical properties with human cancellous bone confirmed the indication of brushite as a bone filling material and the potential of the hydroxyapatite cement as a structural biomaterial.
Resumo:
Recent clinical trials have reported favorable early results for transpedicular vertebral cement reinforcement of osteoporotic vertebral insufficiencies. There is, however, a lack of basic data on the application, safety and biomechanical efficacy of materials such as polymethyl-methacrylate (PMMA) and calciumphospate (CaP) cements. The present study analyzed 33 vertebral pairs from five human cadaver spines. Thirty-nine vertebrae were osteoporotic (bone mineral density < 0.75 g/cm2), 27 showed nearly normal values. The cranial vertebra of each pair was augmented with either PMMA (Palacos E-Flow) or experimental brushite cement (EBC), with the caudal vertebra as a control. PMMA and EBC were easy to inject, and vertebral fillings of 20-50% were achieved. The maximal possible filling was inversely correlated to the bone mineral density (BMD) values. Cement extrusion into the spinal canal was observed in 12% of cases. All specimens were subjected to axial compression tests in a displacement-controlled mode. From load-displacement curves, the stiffness, S, and the maximal force before failure, Fmax, were determined. Compared with the native control vertebrae, a statistically significant increase in vertebral stiffness and Fmax was observed by the augmentation. With PMMA the stiffness increased by 174% (P = 0.018) and Fmax by 195% (P = 0.001); the corresponding augmentation with EBC was 120% (P = 0.03) and 113% (P = 0.002). The lower the initial BMD, the more pronounced was the augmentation effect. Both PMMA and EBC augmentation reliably and significantly raised the stiffness and maximal tolerable force until failure in osteoporotic vertebral bodies. In non-porotic specimens, no significant increase was achieved.
Resumo:
OBJECTIVE To biomechanically test the properties of three different Universal Micro External Fixator (UMEX™) configurations with regard to their use in very small animals (<5kg) and compare the UMEX system to the widely used IMEX External Skeletal Fixation (SK™) system in terms of stiffness, space needed for pin placement and weight. METHODS Three different UMEX configurations (type Ia, type Ib, and type II modified) and one SK configuration type Ia were used to stabilize Delrin plastic rods in a 1 cm fracture gap model. These constructs were tested in axial compression, craniocaudal bending, mediolateral bending, and torsion. Testing was conducted within the elastic range and mean stiffness in each mode was determined from the slope of the linear portion of the load-deformation curve. A Kruskal Wallis one-way analysis of variance on ranks test was utilized to assess differences between constructs (p <0.05). RESULTS The UMEX type II modified configuration was significantly stiffer than the other UMEX configurations and the SK type Ia, except in craniocaudal bending, where the SK type Ia configuration was stiffer than all UMEX constructs. The UMEX type Ia configuration was significantly the weakest of those frames. The UMEX constructs were lighter and smaller than the SK, thus facilitating closer pin placement. CONCLUSIONS Results supported previous reports concerning the superiority of more complex constructs regarding stiffness. The UMEX system appears to be a valid alternative for the treatment of long-bone fractures in very small animals.
Resumo:
Tissue grafts are implanted in orthopedic surgery every day. In order to minimize infection risk, bone allografts are often delipidated with supercritical CO2 and sterilized prior to implantation. This treatment may, however, impair the mechanical behavior of the bone graft tissue. The goal of this study was to determine clinically relevant mechanical properties of treated/sterilized human trabecular bone grafts, e.g. the apparent modulus, strength, and the ability to absorb energy during compaction. They were compared with results of identical experiments performed previously on untreated/fresh frozen human trabecular bone from the same anatomical site (Charlebois, 2008). We tested the hypothesis that the morphology–mechanical property relationships of treated cancellous allografts are similar to those of fresh untreated bone. The morphology of the allografts was determined by μCT. Subsequently, cylindrical samples were tested in unconfined and confined compression. To account for various morphologies, the experimental data was fitted to phenomenological mechanical models for elasticity, strength, and dissipated energy density based on bone volume fraction (BV/TV) and the fabric tensor determined by MIL. The treatment/sterilization process does not appear to influence bone graft stiffness. However, strength and energy dissipation of the bone grafts were found to be significantly reduced by 36% to 47% and 66% to 81%, respectively, for a broad range of volume fraction (0.14 < BV/TV < 0.39) and degree of anisotropy (1.24 < DA < 2.18). Since the latter properties are strongly dominated by BV/TV, the clinical consequences of this reduction can be compensated by using grafts with lower porosity. The data of this study suggests that an increase of 5–10% in BV/TV is sufficient to compensate for the reduced post-yield mechanical properties of treated/sterilized bone in monotonic compression. In applications where graft stiffness needs to be matched and strength is not a concern, treated allograft with the same BV/TV as an appropriate fresh bone graft may be used.
Resumo:
The spine is routinely subjected to repetitive complex loading consisting of axial compression, torsion, flexion and extension. Mechanical loading is one of the important causes of spinal diseases, including disc herniation and disc degeneration. It is known that static and dynamic compression can lead to progressive disc degeneration, but little is known about the mechanobiology of the disc subjected to combined dynamic compression and torsion. Therefore, the purpose of this study was to compare the mechanobiology of the intervertebral disc when subjected to combined dynamic compression and axial torsion or pure dynamic compression or axial torsion using organ culture. We applied four different loading modalities 1. control: no loading (NL), 2. cyclic compression (CC), 3. cyclic torsion (CT), and 4. combined cyclic compression and torsion (CCT) on bovine caudal disc explants using our custom made dynamic loading bioreactor for disc organ culture. Loads were applied for 8 h/day and continued for 14 days, all at a physiological magnitude and frequency. Our results provided strong evidence that complex loading induced a stronger degree of disc degeneration compared to one degree of freedom loading. In the CCT group, less than 10\% nucleus pulposus (NP) cells survived the 14 days of loading, while cell viabilities were maintained above 70\% in the NP of all the other three groups and in the annulus fibrosus (AF) of all the groups. Gene expression analysis revealed a strong up-regulation in matrix genes and matrix remodeling genes in the AF of the CCT group. Cell apoptotic activity and glycosaminoglycan content were also quantified but there were no statistically significant differences found. Cell morphology in the NP of the CCT was changed, as shown by histological evaluation. Our results stress the importance of complex loading on the initiation and progression of disc degeneration.
Resumo:
Using variothermal polymer micro-injection molding, disposable arrays of eight polymer micro-cantilevers each 500 μm long, 100 μm wide and 25 μm thick were fabricated. The present study took advantage of an easy flow grade polypropylene. After gold coating for optical read-out and asymmetrical sensitization, the arrays were introduced into the Cantisens(®) Research system to perform mechanical and functional testing. We demonstrate that polypropylene cantilevers can be used as biosensors for medical purposes in the same manner as the established silicon ones to detect single-stranded DNA sequences and metal ions in real-time. A differential signal of 7 nm was detected for the hybridization of 1 μM complementary DNA sequences. For 100 nM copper ions the differential signal was found to be (36 ± 5) nm. Nano-mechanical sensing of medically relevant, nanometer-size species is essential for fast and efficient diagnosis.