10 resultados para Measurement uncertainty
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The stratospheric degradation of chlorofluorocarbons (CFCs) releases chlorine, which is a major contributor to the destruction of stratospheric ozone (O3). A recent study reported strong chlorine isotope fractionation during the breakdown of the most abundant CFC (CFC-12, CCl2F2, Laube et al., 2010a), similar to effects seen in nitrous oxide (N2O). Using air archives to obtain a long-term record of chlorine isotope ratios in CFCs could help to identify and quantify their sources and sinks. We analyse the three most abundant CFCs and show that CFC-11 (CCl3F) and CFC-113 (CClF2CCl2F) exhibit significant stratospheric chlorine isotope fractionation, in common with CFC-12. The apparent isotope fractionation (ϵapp) for mid- and high-latitude stratospheric samples are respectively −2.4 (0.5) and −2.3 (0.4) ‰ for CFC-11, −12.2 (1.6) and −6.8 (0.8) ‰ for CFC-12 and −3.5 (1.5) and −3.3 (1.2) ‰ for CFC-113, where the number in parentheses is the numerical value of the standard uncertainty expressed in per mil. Assuming a constant isotope composition of emissions, we calculate the expected trends in the tropospheric isotope signature of these gases based on their stratospheric 37Cl enrichment and stratosphere–troposphere exchange. We compare these projections to the long-term δ (37Cl) trends of all three CFCs, measured on background tropospheric samples from the Cape Grim air archive (Tasmania, 1978–2010) and tropospheric firn air samples from Greenland (North Greenland Eemian Ice Drilling (NEEM) site) and Antarctica (Fletcher Promontory site). From 1970 to the present day, projected trends agree with tropospheric measurements, suggesting that within analytical uncertainties, a constant average emission isotope delta (δ) is a compatible scenario. The measurement uncertainty is too high to determine whether the average emission isotope δ has been affected by changes in CFC manufacturing processes or not. Our study increases the suite of trace gases amenable to direct isotope ratio measurements in small air volumes (approximately 200 mL), using a single-detector gas chromatography–mass spectrometry (GC–MS) system.
Resumo:
The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of root s = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K-s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5 % for central isolated hadrons and 1-3 % for the final calorimeter jet energy scale.
Resumo:
The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of sqrt(s) = 7 TeV corresponding to an integrated luminosity of 38 inverse pb. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0.4 or R=0.6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pt > 20 GeV and pseudorapidities eta<4.5. The JES systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams. The JES uncertainty is less than 2.5% in the central calorimeter region (eta<0.8) for jets with 60 < pt < 800 GeV, and is maximally 14% for pt < 30 GeV in the most forward region 3.2
Resumo:
We report on a new measurement of the neutron beta-asymmetry parameter A with the instrument \perkeo. Main advancements are the high neutron polarization of P=99.7(1) from a novel arrangement of super mirror polarizers and reduced background from improvements in beam line and shielding. Leading corrections were thus reduced by a factor of 4, pushing them below the level of statistical error and resulting in a significant reduction of systematic uncertainty compared to our previous experiments. From the result A0=−0.11996(58), we derive the ratio of the axial-vector to the vector coupling constant λ=gA/gV=−1.2767(16)
Resumo:
The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of sqrt(s) = 7 TeV corresponding to an integrated luminosity of 38 inverse pb. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0.4 or R=0.6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pt > 20 GeV and pseudorapidities eta<4.5. The JES systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams. The JES uncertainty is less than 2.5% in the central calorimeter region (eta<0.8) for jets with 60 < pt < 800 GeV, and is maximally 14% for pt < 30 GeV in the most forward region 3.2
Resumo:
This paper presents a measurement of the top quark pair () production charge asymmetry A (C) using 4.7 fb(-1) of proton-proton collisions at a centre-of-mass energy root s = 7 TeV collected by the ATLAS detector at the LHC. A -enriched sample of events with a single lepton (electron or muon), missing transverse momentum and at least four high transverse momentum jets, of which at least one is tagged as coming from a b-quark, is selected. A likelihood fit is used to reconstruct the event kinematics. A Bayesian unfolding procedure is employed to estimate A (C) at the parton-level. The measured value of the production charge asymmetry is A (C) = 0.006 +/- 0.010, where the uncertainty includes both the statistical and the systematic components. Differential A (C) measurements as a function of the invariant mass, the rapidity and the transverse momentum of the system are also presented. In addition, A (C) is measured for a subset of events with large velocity, where physics beyond the Standard Model could contribute. All measurements are consistent with the Standard Model predictions.
Resumo:
A measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 4.5 fb −1 of proton-proton collisions data at s √ =7 TeV and 20.3 fb −1 at s √ =8 TeV collected by the ATLAS detector at the Large Hadron Collider. The number of observed Higgs boson decays to diphotons divided by the corresponding Standard Model prediction, called the signal strength, is found to be μ=1.17±0.27 at the value of the Higgs boson mass measured by ATLAS, m H =125.4 GeV . The analysis is optimized to measure the signal strengths for individual Higgs boson production processes at this value of m H . They are found to be μ ggF =1.32±0.38 , μ VBF =0.8±0.7 , μ WH =1.0±1.6 , μ ZH =0.1 +3.7 −0.1 , and μ tt ¯ H =1.6 +2.7 −1.8 , for Higgs boson production through gluon fusion, vector-boson fusion, and in association with a W or Z boson or a top-quark pair, respectively. Compared with the previously published ATLAS analysis, the results reported here also benefit from a new energy calibration procedure for photons and the subsequent reduction of the systematic uncertainty on the diphoton mass resolution. No significant deviations from the predictions of the Standard Model are found.
Resumo:
This paper presents the performance of the ATLAS muon reconstruction during the LHC run with pp collisions at √s = 7–8 TeV in 2011–2012, focusing mainly on data collected in 2012. Measurements of the reconstruction efficiency and of the momentum scale and resolution, based on large reference samples of J/ψ → μμ, Z → μμ and ϒ → μμ decays, are presented and compared to Monte Carlo simulations. Corrections to the simulation, to be used in physics analysis, are provided. Over most of the covered phase space (muon |η| < 2.7 and 5 ≲ pT ≲ 100 GeV) the efficiency is above 99% and is measured with per-mille precision. The momentum resolution ranges from 1.7% at central rapidity and for transverse momentum pT ≅ 10 GeV, to 4% at large rapidity and pT ≅ 100 GeV. The momentum scale is known with an uncertainty of 0.05% to 0.2% depending on rapidity. A method for the recovery of final state radiation from the muons is also presented.
Resumo:
The integrated elliptic flow of charged particles produced in Pb+Pb collisions at √sNN = 2.76 TeV has been measured with the ATLAS detector using data collected at the Large Hadron Collider. The anisotropy parameter, v2, was measured in the pseudorapidity range |η| ≤ 2.5 with the event-plane method. In order to include tracks with very low transverse momentum pT, thus reducing the uncertainty in v2 integrated over pT, a 1 μb−1 data sample recorded without a magnetic field in the tracking detectors is used. The centrality dependence of the integrated v2 is compared to other measurements obtained with higher pT thresholds. The integrated elliptic flow is weakly decreasing with |η|. The integrated v2 transformed to the rest frame of one of the colliding nuclei is compared to the lower-energy RHIC data.
Resumo:
New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter θ 23 . Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57×10 20 protons on target, T2K has fit the energy-dependent ν μ oscillation probability to determine oscillation parameters. The 68% confidence limit on sin 2 (θ 23 ) is 0.514 +0.055 −0.056 (0.511±0.055 ), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Δm 2 32 =(2.51±0.10)×10 −3 eV 2 /c 4 (inverted hierarchy: Δm 2 13 =(2.48±0.10)×10 −3 eV 2 /c 4 ). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty.