23 resultados para Maxima and minima

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

When a hand-held object is moved, grip and load force are accurately coordinated for establishing grasp stability. In the present work, the question was raised whether patients with Gilles de la Tourette syndrome (TS), who show tic-like movements, are impaired in grip-load force control when executing a manipulative task. To this end, we assessed force regulation during action patterns that required rhythmical unimanual or bimanual (iso-directional/anti-directional) movements. Results showed that the profile of grip-load force ratio was characterized by maxima and minima that were realized at upward and downward hand positions, respectively. TS patients showed increased force ratios during unimanual and bimanual movements, compared with control subjects, indicative of an inaccurate specification of the precision grip. Functional imaging data complemented the behavioural results and revealed that secondary motor areas showed no (or greatly reduced) activation in TS patients when executing the movement tasks as compared with baseline conditions. This indicates that the metabolic level in the secondary motor areas was equal during rest and task performance. At the neuronal level, this observation suggests that these cortical areas were continuously involved in movement preparation. Based on these data, we conclude that the ongoing activation of secondary motor areas may be explained by the TS patients' involuntary urges to move. Accordingly, interference will prevent an accurate planning of voluntary behaviour. Together, these findings reveal modulations in movement organization in patients with TS and exemplify degrading consequences for manual function.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Drugs are routinely combined in anesthesia and pain management to obtain an enhancement of the desired effects. However, a parallel enhancement of the undesired effects might take place as well, resulting in a limited therapeutic usefulness. Therefore, when addressing the question of optimal drug combinations, side effects must be taken into account. METHODS: By extension of a previously published interaction model, the authors propose a method to study drug interactions considering also their side effects. A general outcome parameter identified as patient's well-being is defined by superposition of positive and negative effects. Well-being response surfaces are computed and analyzed for varying drugs pharmacodynamics and interaction types. In particular, the existence of multiple maxima and of optimal drug combinations is investigated for the combination of two drugs. RESULTS: Both drug pharmacodynamics and interaction type affect the well-being surface and the deriving optimal combinations. The effect of the interaction parameters can be explained in terms of synergy and antagonism and remains unchanged for varying pharmacodynamics. For all simulations performed for the combination of two drugs, the presence of more than one maximum was never observed. CONCLUSIONS: The model is consistent with clinical knowledge and supports previously published experimental results on optimal drug combinations. This new framework improves understanding of the characteristics of drug combinations used in clinical practice and can be used in clinical research to identify optimal drug dosing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

On the basis of a multi-proxy approach and a strategy combining lacustrine and marine records along a north–south transect, data collected in the central Mediterranean within the framework of a collaborative project have led to reconstruction of high-resolution and well-dated palaeohydrological records and to assessment of their spatial and temporal coherency. Contrasting patterns of palaeohydrological changes have been evidenced in the central Mediterranean: south (north) of around 40° N of latitude, the middle part of the Holocene was characterised by lake-level maxima (minima), during an interval dated to ca. 10 300–4500 cal BP to the south and 9000–4500 cal BP to the north. Available data suggest that these contrasting palaeohydrological patterns operated throughout the Holocene, both on millennial and centennial scales. Regarding precipitation seasonality, maximum humidity in the central Mediterranean during the middle part of the Holocene was characterised by humid winters and dry summers north of ca. 40° N, and humid winters and summers south of ca. 40° N. This may explain an apparent conflict between palaeoclimatic records depending on the proxies used for reconstruction as well as the synchronous expansion of tree species taxa with contrasting climatic requirements. In addition, south of ca. 40° N, the first millennium of the Holocene was characterised by very dry climatic conditions not only in the eastern, but also in the central- and the western Mediterranean zones as reflected by low lake levels and delayed reforestation. These results suggest that, in addition to the influence of the Nile discharge reinforced by the African monsoon, the deposition of Sapropel 1 has been favoured (1) by an increase in winter precipitation in the northern Mediterranean borderlands, and (2) by an increase in winter and summer precipitation in the southern Mediterranean area. The climate reversal following the Holocene climate optimum appears to have been punctuated by two major climate changes around 7500 and 4500 cal BP. In the central Mediterranean, the Holocene palaeohydrological changes developed in response to a combination of orbital, ice-sheet and solar forcing factors. The maximum humidity interval in the south-central Mediterranean started ca. 10 300 cal BP, in correlation with the decline (1) of the possible blocking effects of the North Atlantic anticyclone linked to maximum insolation, and/or (2) of the influence of the remnant ice sheets and fresh water forcing in the North Atlantic Ocean. In the north-central Mediterranean, the lake-level minimum interval began only around 9000 cal BP when the Fennoscandian ice sheet disappeared and a prevailing positive NAO-(North Atlantic Oscillation) type circulation developed in the North Atlantic area. The major palaeohydrological oscillation around 4500–4000 cal BP may be a non-linear response to the gradual decrease in insolation, with additional key seasonal and interhemispheric changes. On a centennial scale, the successive climatic events which punctuated the entire Holocene in the central Mediterranean coincided with cooling events associated with deglacial outbursts in the North Atlantic area and decreases in solar activity during the interval 11 700–7000 cal BP, and to a possible combination of NAO-type circulation and solar forcing since ca. 7000 cal BP onwards. Thus, regarding the centennial-scale climatic oscillations, the Mediterranean Basin appears to have been strongly linked to the North Atlantic area and affected by solar activity over the entire Holocene. In addition to model experiments, a better understanding of forcing factors and past atmospheric circulation patterns behind the Holocene palaeohydrological changes in the Mediterranean area will require further investigation to establish additional high-resolution and well-dated records in selected locations around the Mediterranean Basin and in adjacent regions. Special attention should be paid to greater precision in the reconstruction, on millennial and centennial timescales, of changes in the latitudinal location of the limit between the northern and southern palaeohydrological Mediterranean sectors, depending on (1) the intensity and/or characteristics of climatic periods/oscillations (e.g. Holocene thermal maximum versus Neoglacial, as well as, for instance, the 8.2 ka event versus the 4 ka event or the Little Ice Age); and (2) on varying geographical conditions from the western to the eastern Mediterranean areas (longitudinal gradients). Finally, on the basis of projects using strategically located study sites, there is a need to explore possible influences of other general atmospheric circulation patterns than NAO, such as the East Atlantic–West Russian or North Sea–Caspian patterns, in explaining the apparent complexity of palaeoclimatic (palaeohydrological) Holocene records from the Mediterranean area.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Images of an object under different illumination are known to provide strong cues about the object surface. A mathematical formalization of how to recover the normal map of such a surface leads to the so-called uncalibrated photometric stereo problem. In the simplest instance, this problem can be reduced to the task of identifying only three parameters: the so-called generalized bas-relief (GBR) ambiguity. The challenge is to find additional general assumptions about the object, that identify these parameters uniquely. Current approaches are not consistent, i.e., they provide different solutions when run multiple times on the same data. To address this limitation, we propose exploiting local diffuse reflectance (LDR) maxima, i.e., points in the scene where the normal vector is parallel to the illumination direction (see Fig. 1). We demonstrate several noteworthy properties of these maxima: a closed-form solution, computational efficiency and GBR consistency. An LDR maximum yields a simple closed-form solution corresponding to a semi-circle in the GBR parameters space (see Fig. 2); because as few as two diffuse maxima in different images identify a unique solution, the identification of the GBR parameters can be achieved very efficiently; finally, the algorithm is consistent as it always returns the same solution given the same data. Our algorithm is also remarkably robust: It can obtain an accurate estimate of the GBR parameters even with extremely high levels of outliers in the detected maxima (up to 80 % of the observations). The method is validated on real data and achieves state-of-the-art results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different pathogens, such as Escherichia coli and Staphylococcus aureus, can be responsible for different outcomes of mastitis; that is, acute and severe or chronic and subclinical. These differences in the disease could be related to different mammary responses to the pathogens. The objective of this study was to determine if intramammary challenge with the endotoxins lipopolysaccharide (LPS), from E. coli, and lipoteichoic acid (LTA), from Staph. aureus, induce different immune responses in vivo in milk cells and mammary tissue. To provide a reference level for comparing the challenge and to show the different stimulation of the mammary immune system on a quantitatively similar level, dosages of LPS and LTA were chosen that induced an increase of somatic cells in milk to similar maxima. One udder quarter in each of 21 lactating dairy cows was challenged with 0.2 mug of LPS or 20 mug of LTA. From these quarters and from respective control quarters, milk cells or tissue biopsies were obtained at 0, 6, and 12h relative to the challenge to measure mRNA expression of tumor necrosis factor-alpha (TNFalpha), IL-1beta, IL-8, lactoferrin, and RANTES (regulated upon activation, normal T-cell expressed and secreted). Furthermore, if no biopsies were performed, hourly milk samples were taken for measurement of somatic cell count, lactate dehydrogenase (LDH), and TNFalpha. Somatic cell count increased in all treatments to similar maxima with LPS and LTA treatments. Concentrations of TNFalpha in milk increased with LPS but not with LTA. The activity of LDH in milk increased in both treatments and was more pronounced with LPS than with LTA. The mRNA expression of TNFalpha, IL-1beta, IL-8, and RANTES showed increases in milk cells, and LPS was a stronger inducer than LTA. Lactoferrin mRNA expression decreased in milk cells with LPS and LTA treatments. The measured factors did not change in either treatment in mammary tissue. Challenge of udder quarters with dosages of LPS and LTA that induce similar increases in SCC stimulate the appearance of different immune factor patterns. This dissimilar response to LPS and LTA may partly explain the different course and intensity of mastitis after infection with E. coli and Staph. aureus, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesenchymal stem cell (MSC) therapy is a promising approach for regaining muscle function after trauma. Prior to clinical application, the ideal time of transplantation has to be determined. We investigated the effects of immediate and delayed transplantation. Sprague-Dawley rats received a crush trauma to the left soleus muscle. Treatment groups were transplanted locally with 2 × 10(6) autologous MSCs, either immediately or 7 days after trauma. Saline was used as sham therapy. Contraction force tests and histological analyses were performed 4 weeks after injury. GFP-labelled MSCs were followed after transplantation. The traumatized soleus muscles of the sham group displayed a reduction of twitch forces to 36 ± 17% and of tetanic forces to 29 ± 11% of the non-injured right control side, respectively. Delayed MSC transplantation resulted in a significant improvement of contraction maxima in both stimulation modes (twitch, p = 0.011; tetany, p = 0.014). Immediate transplantation showed a significant increase in twitch forces to 59 ± 17% (p = 0.043). There was no significant difference in contraction forces between muscles treated by immediate and delayed cell transplantation. We were able to identify MSCs in the interstitium of the injured muscles up to 4 weeks after transplantation. Despite the fundamental differences of the local environment, which MSCs encounter after transplantation, similar results could be obtained with respect to functional muscle regeneration. We believe that transplanted MSCs residing in the interstitial compartment evolve their regenerative capabilities through paracrine pathways. Our data suggest a large time window of the therapeutical measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interface between climate and ecosystem structure and function is incompletely understood, partly because few ecological records start before the recent warming phase. Here, we analyse an exceptional 100-yr long record of the great tit (Parus major) population in Switzerland in relation to climate and habitat phenology. Using structural equation analysis, we demonstrate an uninterrupted cascade of significant influences of the large-scale atmospheric circulation (North-Atlantic Oscillation, NAO, and North-sea – Caspian Pattern, NCP) on habitat and breeding phenology, and further on fitness-relevant life history traits within great tit populations. We then apply the relationships of this analysis to reconstruct the circulation-driven component of fluctuations in great tit breeding phenology and productivity on the basis of new seasonal NAO and NCP indices back to 1500 AD. According to the structural equation model, the multi-decadal oscillation of the atmospheric circulation likely led to substantial variation in habitat phenology, productivity and consequently, tit population fluctuations with minima during the "Maunder Minimum" (∼ 1650–1720) and the Little Ice Age Type Event I (1810–1850). The warming since 1975 was not only related with a quick shift towards earlier breeding, but also with the highest productivity since 1500, and thus, the impact of the NAO and NCP has contributed to an unprecedented increase of the population. A verification of the structural equation model against two independent data series (1970–2000 and 1750–1900) corroborates that the retrospective model reliably depicts the major long-term NAO/NCP impact on ecosystem parameters. The results suggest a complex cascade of climate effects beginning at a global scale and ending at the level of individual life histories. This sheds light on how large-scale climate conditions substantially affect major life history parameters within a population, and thus influence key ecosystem parameters at the scale of centuries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyetheretherketone (PEEK) is a novel polymer with potential advantages for its use in demanding orthopaedic applications (e.g. intervertebral cages). However, the influence of a physiological environment on the mechanical stability of PEEK has not been reported. Furthermore, the suitability of the polymer for use in highly stressed spinal implants such as intervertebral cages has not been investigated. Therefore, a combined experimental and analytical study was performed to address these open questions. A quasi-static mechanical compression test was performed to compare the initial mechanical properties of PEEK-OPTIMA polymer in a dry, room-temperature and in an aqueous, 37 degrees C environment (n=10 per group). The creep behaviour of cylindrical PEEK polymer specimens (n=6) was measured in a simulated physiological environment at an applied stress level of 10 MPa for a loading duration of 2000 hours (12 weeks). To compare the biomechanical performance of different intervertebral cage types made from PEEK and titanium under complex loading conditions, a three-dimensional finite element model of a functional spinal unit was created. The elastic modulus of PEEK polymer specimens in a physiological environment was 1.8% lower than that of specimens tested at dry, room temperature conditions (P<0.001). The results from the creep test showed an average creep strain of less than 0.1% after 2000 hours of loading. The finite element analysis demonstrated high strain and stress concentrations at the bone/implant interface, emphasizing the importance of cage geometry for load distribution. The stress and strain maxima in the implants were well below the material strength limits of PEEK. In summary, the experimental results verified the mechanical stability of the PEEK-OPTIMA polymer in a simulated physiological environment, and over extended loading periods. Finite element analysis supported the use of PEEK-OPTIMA for load-bearing intervertebral implants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the important role of the Central Andes (15–30° S) for climate reconstruction, knowledge about the Quaternary glaciation is very limited due to the scarcity of organic material for radiocarbon dating. We applied 10Be surface exposure dating (SED) on 22 boulders from moraines in the Cordon de Doña Rosa, Northern/Central Chile (~31° S). The results show that several glacial advances in the southern Central Andes occurred during the Late Glacial between ~14.7±1.5 and 11.6±1.2 ka. A much more extensive glaciation is dated to ~32±3 ka, predating the temperature minimum of the global LGM (Last Glacial Maximum: ~20 ka). Reviewing these results in the paleoclimatic context, we conclude that the Late Glacial advances were most likely caused by an intensification of the tropical circulation and a corresponding increase in summer precipitation. High-latitude temperatures minima, e.g. the Younger Dryas (YD) and the Antarctic Cold Reversal (ACR) may have triggered individual advances, but current systematic exposure age uncertainties limit precise correlations. The absence of LGM moraines indicates that moisture advection was too limited to allow significant glacial advances at ~20 ka. The tropical circulation was less intensive despite the maximum in austral summer insolation. Winter precipitation was apparently also insufficient, although pollen and marine studies indicate a northward shift of the westerlies at that time. The dominant pre-LGM glacial advances in Northern/Central Chile at ~32 ka required lower temperatures and increased precipitation than today. We conclude that the westerlies were more intense and/or shifted equatorward, possibly due to increased snow and ice cover at higher southern latitudes coinciding with a minimum of insolation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: In ictal scalp electroencephalogram (EEG) the presence of artefacts and the wide ranging patterns of discharges are hurdles to good diagnostic accuracy. Quantitative EEG aids the lateralization and/or localization process of epileptiform activity. METHODS: Twelve patients achieving Engel Class I/IIa outcome following temporal lobe surgery (1 year) were selected with approximately 1-3 ictal EEGs analyzed/patient. The EEG signals were denoised with discrete wavelet transform (DWT), followed by computing the normalized absolute slopes and spatial interpolation of scalp topography associated to detection of local maxima. For localization, the region with the highest normalized absolute slopes at the time when epileptiform activities were registered (>2.5 times standard deviation) was designated as the region of onset. For lateralization, the cerebral hemisphere registering the first appearance of normalized absolute slopes >2.5 times the standard deviation was designated as the side of onset. As comparison, all the EEG episodes were reviewed by two neurologists blinded to clinical information to determine the localization and lateralization of seizure onset by visual analysis. RESULTS: 16/25 seizures (64%) were correctly localized by the visual method and 21/25 seizures (84%) by the quantitative EEG method. 12/25 seizures (48%) were correctly lateralized by the visual method and 23/25 seizures (92%) by the quantitative EEG method. The McNemar test showed p=0.15 for localization and p=0.0026 for lateralization when comparing the two methods. CONCLUSIONS: The quantitative EEG method yielded significantly more seizure episodes that were correctly lateralized and there was a trend towards more correctly localized seizures. SIGNIFICANCE: Coupling DWT with the absolute slope method helps clinicians achieve a better EEG diagnostic accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anatolia is situated in the Eastern Mediterranean region between 36 – 42N and 26 – 45E. The geological records of paleoglaciations in the high terrains of Anatolia are key archives to quantify paleoclimate change in the Eastern Mediterranean area. The climate of the Eastern Mediterranean region is influenced by three main atmospheric systems: the main middle to high latitude westerlies, the mid-latitude subtropical high-pressure systems, and the monsoon climate. Glacial geological studies in Turkey have started in the late 19th century. Glacial deposits are found mainly in the eastern, northeastern and southern part of the Anatolian Peninsula. Anatolia is the fundamental element to understand the interactions between paleoenvironment, climatic variations, and development of the human societies. As the Taurus and Black Sea Mountains are sensitively situated for the paleoclimatic reconstructions, a chronostratigraphic framework on the paleoglaciation should be elaborated. The timing of the Last Glacial Maximum (LGM) in Anatolia is still unknown. Our first results from Kavron Valley (Kaçkar Mountains, NE Turkey) are encouraging for the reconstruction of paleoglaciations in Turkey and related paleoclimatological interpretations although it is presently difficult to pinpoint the classical Last Glacial Maximum – Younger Dryas – Little Ice Age moraine sequences in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Sun shows strong variability in its magnetic activity, from Grand minima to Grand maxima, but the nature of the variability is not fully understood, mostly because of the insufficient length of the directly observed solar activity records and of uncertainties related to long-term reconstructions. Here we present a new adjustment-free reconstruction of solar activity over three millennia and study its different modes. Methods. We present a new adjustment-free, physical reconstruction of solar activity over the past three millennia, using the latest verified carbon cycle, 14C production, and archeomagnetic field models. This great improvement allowed us to study different modes of solar activity at an unprecedented level of details. Results. The distribution of solar activity is clearly bi-modal, implying the existence of distinct modes of activity. The main regular activity mode corresponds to moderate activity that varies in a relatively narrow band between sunspot numbers 20 and 67. The existence of a separate Grand minimum mode with reduced solar activity, which cannot be explained by random fluctuations of the regular mode, is confirmed at a high confidence level. The possible existence of a separate Grand maximum mode is also suggested, but the statistics is too low to reach a confident conclusion. Conclusions. The Sun is shown to operate in distinct modes – a main general mode, a Grand minimum mode corresponding to an inactive Sun, and a possible Grand maximum mode corresponding to an unusually active Sun. These results provide important constraints for both dynamo models of Sun-like stars and investigations of possible solar influence on Earth’s climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Toba eruption that occurred some 74 ka ago in Sumatra, Indonesia, is among the largest volcanic events on Earth over the last 2 million years. Tephra from this eruption has been spread over vast areas in Asia, where it constitutes a major time marker close to the Marine Isotope Stage 4/5 boundary. As yet, no tephra associated with Toba has been identified in Greenland or Antarctic ice cores. Based on new accurate dating of Toba tephra and on accurately dated European stalagmites, the Toba event is known to occur between the onsets of Greenland interstadials (GI) 19 and 20. Furthermore, the existing linking of Greenland and Antarctic ice cores by gas records and by the bipolar seesaw hypothesis suggests that the Antarctic counterpart is situated between Antarctic Isotope Maxima (AIM) 19 and 20. In this work we suggest a direct synchronization of Greenland (NGRIP) and Antarctic (EDML) ice cores at the Toba eruption based on matching of a pattern of bipolar volcanic spikes. Annual layer counting between volcanic spikes in both cores allows for a unique match. We first demonstrate this bipolar matching technique at the already synchronized Laschamp geomagnetic excursion (41 ka BP) before we apply it to the suggested Toba interval. The Toba synchronization pattern covers some 2000 yr in GI-20 and AIM-19/20 and includes nine acidity peaks that are recognized in both ice cores. The suggested bipolar Toba synchronization has decadal precision. It thus allows a determination of the exact phasing of inter-hemispheric climate in a time interval of poorly constrained ice core records, and it allows for a discussion of the climatic impact of the Toba eruption in a global perspective. The bipolar linking gives no support for a long-term global cooling caused by the Toba eruption as Antarctica experiences a major warming shortly after the event. Furthermore, our bipolar match provides a way to place palaeo-environmental records other than ice cores into a precise climatic context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heat waves of 2003 in Western Europe and 2010 in Russia, commonly labelled as rare climatic anomalies outside of previous experience, are often taken as harbingers of more frequent extremes in the global warming-influenced future. However, a recent reconstruction of spring–summer temperatures for WE resulted in the likelihood of significantly higher temperatures in 1540. In order to check the plausibility of this result we investigated the severity of the 1540 drought by putting forward the argument of the known soil desiccation-temperature feedback. Based on more than 300 first-hand documentary weather report sources originating from an area of 2 to 3 million km2, we show that Europe was affected by an unprecedented 11-month-long Megadrought. The estimated number of precipitation days and precipitation amount for Central and Western Europe in 1540 is significantly lower than the 100-year minima of the instrumental measurement period for spring, summer and autumn. This result is supported by independent documentary evidence about extremely low river flows and Europe-wide wild-, forest- and settlement fires. We found that an event of this severity cannot be simulated by state-of-the-art climate models.