8 resultados para Matrix Array Symmetric Key Encryption
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVES The application of an enamel matrix derivative (EMD) for regenerative periodontal surgery has been shown to promote formation of new cementum, periodontal ligament, and alveolar bone. In intrabony defects with a complicated anatomy, the combination of EMD with various bone grafting materials has resulted in additional clinical improvements, but the initial cellular response of osteoblasts coming in contact with these particles have not yet been fully elucidated. The objective of the present study was to evaluate the in vitro effects of EMD combined with a natural bone mineral (NBM) on a wide variety of genes, cytokines, and transcription factors and extracellular matrix proteins on primary human osteoblasts. MATERIAL AND METHODS Primary human osteoblasts were seeded on NBM particles pre-coated with versus without EMD and analyzed for gene differences using a human osteogenesis gene super-array (Applied Biosystems). Osteoblast-related genes include those transcribed during bone mineralization, ossification, bone metabolism, cell growth and differentiation, as well as gene products representing extracellular matrix molecules, transcription factors, and cell adhesion molecules. RESULTS EMD promoted gene expression of various osteoblast differentiation markers including a number of collagen types and isoforms, SMAD intracellular proteins, osteopontin, cadherin, alkaline phosphatase, and bone sialoprotein. EMD also upregulated a variety of growth factors including bone morphogenetic proteins, vascular endothelial growth factors, insulin-like growth factor, transforming growth factor, and their associated receptor proteins. CONCLUSION The results from the present study demonstrate that EMD is capable of activating a wide variety of genes, growth factors, and cytokines when pre-coated onto NBM particles. CLINICAL RELEVANCE The described in vitro effects of EMD on human primary osteoblasts provide further biologic support for the clinical application of a combination of EMD with NBM particles in periodontal and oral regenerative surgery.
Resumo:
BACKGROUND/AIM: Because the pericapillary basement membrane in skeletal muscles of patients with chronic critical limb ischemia (CLI) is thickened, we determined the expression patterns of genes involved in collagen metabolism, using samples from 9 CLI patients, 4 patients with acute limb ischemia and 4 healthy controls. METHODS: Gene array analysis, quantitative RT-PCR and semiquantitative grading of immunohistochemical reactivity were performed to determine mRNA/cDNA and protein concentrations. RESULTS: In CLI patients compared to controls, cDNA levels of matrix metalloproteinase (MMP)-9 and MMP-19 were higher, collagen type IV chains A1 and A2, tissue inhibitor of matrix metalloproteinase (TIMP)-1 and TIMP-2 were similar and MMP-2 were lower. On the protein level, MMP-2, MMP-9, MMP-19 and TIMP-1 were more abundantly expressed. In skeletal muscles from patients with acute limb ischemia, cDNA and protein levels of MMP-9, MMP-19, collagen type IV chains, TIMP-1 and TIMP-2 were high. MMP-2 was elevated at the protein but decreased on the cDNA level. CONCLUSION: Expression of basement membrane components in skeletal muscles of CLI and acute limb ischemia patients is altered, possibly contributing to the pathogenesis of peripheral arterial disease.
Resumo:
BACKGROUND: Despite a large body of clinical and histological data demonstrating beneficial effects of enamel matrix proteins (EMPs) for regenerative periodontal therapy, it is less clear how the available biological data can explain the mechanisms underlying the supportive effects of EMPs. OBJECTIVE: To analyse all available biological data of EMPs at the cellular and molecular levels that are relevant in the context of periodontal wound healing and tissue formation. METHODS: A stringent systematic approach was applied using the key words "enamel matrix proteins" OR "enamel matrix derivative" OR "emdogain" OR "amelogenin". The literature search was performed separately for epithelial cells, gingival fibroblasts, periodontal ligament cells, cementoblasts, osteogenic/chondrogenic/bone marrow cells, wound healing, and bacteria. RESULTS: A total of 103 papers met the inclusion criteria. EMPs affect many different cell types. Overall, the available data show that EMPs have effects on: (1) cell attachment, spreading, and chemotaxis; (2) cell proliferation and survival; (3) expression of transcription factors; (4) expression of growth factors, cytokines, extracellular matrix constituents, and other macromolecules; and (5) expression of molecules involved in the regulation of bone remodelling. CONCLUSION: All together, the data analysis provides strong evidence for EMPs to support wound healing and new periodontal tissue formation.
Resumo:
Mechanical forces are essential for connective tissue homeostasis. The extracellular matrix (ECM) plays a key role in the transmission of forces generated by the organism (e.g. muscle contraction) and externally applied (e.g. gravity). The expression of specific ECM proteins such as collagens and tenascin-C, as well as of matrix metalloproteinases, involved in their turnover, is influenced by mechanical stimuli. The precise mechanisms by which mechanical strains are translated into chemical signals and lead to differential gene expression are however not fully understood. Cell-matrix adhesion sites are good candidates for hosting a "mechanosensory switch", as they transmit forces from the ECM to the cytoskeleton and vice versa by physically linking the cytoskeleton to the ECM. Integrins, transmembrane proteins located to these adhesion sites, have been shown to trigger a set of internal signaling cascades after mechanical stimulation. We have shown that the expression level of tenascin-C directly correlates with externally applied mechanical stress, as well as with RhoA/RhoA-dependent kinase-mediated cytoskeletal tension. Presumably other genes are regulated in a similar manner. The changes in ECM composition and mechanical properties derived from mechanical stress are relevant in medical intervention after ligament and tendon injury.
Resumo:
The process of developing a successful stroke rehabilitation methodology requires four key components: a good understanding of the pathophysiological mechanisms underlying this brain disease, clear neuroscientific hypotheses to guide therapy, adequate clinical assessments of its efficacy on multiple timescales, and a systematic approach to the application of modern technologies to assist in the everyday work of therapists. Achieving this goal requires collaboration between neuroscientists, technologists and clinicians to develop well-founded systems and clinical protocols that are able to provide quantitatively validated improvements in patient rehabilitation outcomes. In this article we present three new applications of complementary technologies developed in an interdisciplinary matrix for acute-phase upper limb stroke rehabilitation – functional electrical stimulation, arm robot-assisted therapy and virtual reality-based cognitive therapy. We also outline the neuroscientific basis of our approach, present our detailed clinical assessment protocol and provide preliminary results from patient testing of each of the three systems showing their viability for patient use.
Resumo:
Hydrogels have been described as ideal scaffolds for cells of 3D tissue constructs and hold strong promises with respect to in vitro 3D-cell-culture, where cells are isolated from native extracellular matrix (ECM). Synthesized polyethyleneglycol (PEG) hydrogels are appealing with regard to potential for cell therapy or as vehicles for drug delivery or even to regenerate tissue with similar hydrogel-like properties such as the nucleus pulposus of the intervertebral disc (IVD). Here, we tested whether incorporation of RGD motive would hinder discogenic differentiation of primary bone marrow-derived human mesenchymal stem cells (hMSCs) but favor proliferation of undifferentiated hMSCs. HMSCs were embedded in +RGD containing or without RGD PEG hydrogel and pre-conditioned with or without growth and differentiation factor-5 (rhGDF-5) for 13 days. Afterwards, all hMSCs-PEG gels were subsequently cyclically loaded (15% strain, 1Hz) for 5 consecutive days in a bioreactor to generate an IVD-like phenotype. Higher metabolic activity (resazurin assay) was found in groups with rhGDF5 in both gel types with and without RGD. Cell viability and morphology measured by confocal laser microscopy and DNA content showed decreased values (~60%) after 18 days of culture. Real-time RT-PCR of an array of 15 key genes suspected to be distinctive for IVD cells revealed moderate response to rhGDF5 and mechanical loading as also shown by histology staining. Preconditioning and mechanical loading showed relatively moderate responses revealed from both RT-PCR and histology although hMSCs were demonstrated to be potent to differentiate into chondrocyte-progenitor cells in micro- mass and 3D alginate bead culture.
Resumo:
Seizure freedom in patients suffering from pharmacoresistant epilepsies is still not achieved in 20–30% of all cases. Hence, current therapies need to be improved, based on a more complete understanding of ictogenesis. In this respect, the analysis of functional networks derived from intracranial electroencephalographic (iEEG) data has recently become a standard tool. Functional networks however are purely descriptive models and thus are conceptually unable to predict fundamental features of iEEG time-series, e.g., in the context of therapeutical brain stimulation. In this paper we present some first steps towards overcoming the limitations of functional network analysis, by showing that its results are implied by a simple predictive model of time-sliced iEEG time-series. More specifically, we learn distinct graphical models (so called Chow–Liu (CL) trees) as models for the spatial dependencies between iEEG signals. Bayesian inference is then applied to the CL trees, allowing for an analytic derivation/prediction of functional networks, based on thresholding of the absolute value Pearson correlation coefficient (CC) matrix. Using various measures, the thus obtained networks are then compared to those which were derived in the classical way from the empirical CC-matrix. In the high threshold limit we find (a) an excellent agreement between the two networks and (b) key features of periictal networks as they have previously been reported in the literature. Apart from functional networks, both matrices are also compared element-wise, showing that the CL approach leads to a sparse representation, by setting small correlations to values close to zero while preserving the larger ones. Overall, this paper shows the validity of CL-trees as simple, spatially predictive models for periictal iEEG data. Moreover, we suggest straightforward generalizations of the CL-approach for modeling also the temporal features of iEEG signals.
Resumo:
OBJECTIVES Bone replacement grafting materials play an important role in regenerative dentistry. Despite a large array of tested bone-grafting materials, little information is available comparing the effects of bone graft density on in vitro cell behavior. Therefore, the aim of the present study is to compare the effects of cells seeded on bone grafts at low and high density in vitro for osteoblast adhesion, proliferation, and differentiation. MATERIALS AND METHODS The response of osteoblasts to the presence of a growth factor (enamel matrix derivative, (EMD)) in combination with low (8 mg per well) or high (100 mg per well) bone grafts (BG; natural bone mineral, Bio-Oss®) density, was studied and compared for osteoblast cell adhesion, proliferation, and differentiation as assessed by real-time PCR. Standard tissue culture plastic was used as a control with and without EMD. RESULTS The present study demonstrates that in vitro testing of bone-grafting materials is largely influenced by bone graft seeding density. Osteoblast adhesion was up to 50 % lower when cells were seeded on high-density BG when compared to low-density BG and control tissue culture plastic. Furthermore, proliferation was affected in a similar manner whereby cell proliferation on high-density BG (100 mg/well) was significantly increased when compared to that on low-density BG (8 mg/well). In contrast, cell differentiation was significantly increased on high-density BG as assessed by real-time PCR for markers collagen 1 (Col 1), alkaline phosphatase (ALP), and osteocalcin (OC) as well as alizarin red staining. The effects of EMD on osteoblast adhesion, proliferation, and differentiation further demonstrated that the bone graft seeding density largely controls in vitro results. EMD significantly increased cell attachment only on high-density BG, whereas EMD was able to further stimulate cell proliferation and differentiation of osteoblasts on control culture plastic and low-density BG when compared to high-density BG. CONCLUSION The results from the present study demonstrate that the in vitro conditions largely influence cell behavior of osteoblasts seeded on bone grafts and in vitro testing. CLINICAL RELEVANCE These results also illustrate the necessity for careful selection of bone graft seeding density to optimize in vitro testing and provide the clinician with a more accurate description of the osteopromotive potential of bone grafts.