12 resultados para Matrices doublement stochastiques
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Engineered muscle constructs provide a promising perspective on the regeneration or substitution of irreversibly damaged skeletal muscle. However, the highly ordered structure of native muscle tissue necessitates special consideration during scaffold development. Multiple approaches to the design of anisotropically structured substrates with grooved micropatterns or parallel-aligned fibres have previously been undertaken. In this study we report the guidance effect of a scaffold that combines both approaches, oriented fibres and a grooved topography. By electrospinning onto a topographically structured collector, matrices of parallel-oriented poly(ε-caprolactone) fibres with an imprinted wavy topography of 90 µm periodicity were produced. Matrices of randomly oriented fibres or parallel-oriented fibres without micropatterns served as controls. As previously shown, un-patterned, parallel-oriented substrates induced myotube orientation that is parallel to fibre direction. Interestingly, pattern addition induced an orientation of myotubes at an angle of 24° (statistical median) relative to fibre orientation. Myotube length was significantly increased on aligned micropatterned substrates in comparison to that on aligned substrates without pattern (436 ± 245 µm versus 365 ± 212 µm; p < 0.05). We report an innovative, yet simple, design to produce micropatterned electrospun scaffolds that induce an unexpected myotube orientation and an increase in myotube length.
Resumo:
With the rapid increase in approaches to pro- or anti-angiogenic therapy, new and effective methodologies for administration of cell-bound growth factors will be required. We sought to develop the natural hydrogel matrix fibrin as platform for extensive interactions and continuous signaling by the vascular morphogen ephrin-B2 that normally resides in the plasma membrane and requires multivalent presentation for ligation and activation of Eph receptors on apposing endothelial cell surfaces. Using fibrin and protein engineering technology to induce multivalent ligand presentation, a recombinant mutant ephrin-B2 receptor binding domain was covalently coupled to fibrin networks at variably high densities. The ability of fibrin-bound ephrin-B2 to act as ligand for endothelial cells was preserved, as demonstrated by a concomitant, dose-dependent increase of endothelial cell binding to engineered ephrin-B2-fibrin substrates in vitro. The therapeutic relevance of ephrin-B2-fibrin implant matrices was demonstrated by a local angiogenic response in the chick embryo chorioallontoic membrane evoked by the local and prolonged presentation of matrix-bound ephrin-B2 to tissue adjacing the implant. This new knowledge on biomimetic fibrin vehicles for precise local delivery of membrane-bound growth factor signals may help to elucidate specific biological growth factor function, and serve as starting point for development of new treatment strategies.
Resumo:
Agricultural intensification has caused a decline in structural elements in European farmland, where natural habitats are increasingly fragmented. The loss of habitat structures has a detrimental effect on biodiversity and affects bat species that depend on vegetation structures for foraging and commuting. We investigated the impact of connectivity and configuration of structural landscape elements on flight activity, species richness and diversity of insectivorous bats and distinguished three bat guilds according to species-specific bioacoustic characteristics. We tested whether bats with shorter-range echolocation were more sensitive to habitat fragmentation than bats with longer-range echolocation. We expected to find different connectivity thresholds for the three guilds and hypothesized that bats prefer linear over patchy landscape elements. Bat activity was quantified using repeated acoustic monitoring in 225 locations at 15 study plots distributed across the Swiss Central Plateau, where connectivity and the shape of landscape elements were determined by spatial analysis (GIS). Spectrograms of bat calls were assigned to species with the software batit by means of image recognition and statistical classification algorithms. Bat activity was significantly higher around landscape elements compared to open control areas. Short- and long-range echolocating bats were more active in well-connected landscapes, but optimal connectivity levels differed between the guilds. Species richness increased significantly with connectivity, while species diversity did not (Shannon's diversity index). Total bat activity was unaffected by the shape of landscape elements. Synthesis and applications. This study highlights the importance of connectivity in farmland landscapes for bats, with shorter-range echolocating bats being particularly sensitive to habitat fragmentation. More structurally diverse landscape elements are likely to reduce population declines of bats and could improve conditions for other declining species, including birds. Activity was highest around optimal values of connectivity, which must be evaluated for the different guilds and spatially targeted for a region's habitat configuration. In a multi-species approach, we recommend the reintroduction of structural elements to increase habitat heterogeneity should become part of agri-environment schemes.
Resumo:
The thermal release rate of nuclear reaction products was investigated in offline annealing experiments. This work was motivated by the search for a high melting catcher material for recoiling products from heavy ion induced nuclear fusion reactions. Polycrystalline refractory metal foils of Ni, Y, Zr, Nb, Mo, Hf, W, and Re were investigated as catcher metals. Diffusion data for various tracer/host combinations were deduced from the measured release rates. This work focuses on the diffusion and the release rate of volatile p-elements from row 5 and 6 of the periodic table as lighter homologues of the superheavy elements with Z ≥ 113 to be studied in future experiments. A massive radiation damage enhancement of the diffusion velocity was observed. Diffusion trends have been established along the groups and rows of the periodic table based on the dependence of diffusion velocity on atomic sizes.
Resumo:
At birth, the mammalian lung is still immature. The alveoli are not yet formed and the interairspace walls contain two capillary layers which are separated by an interstitial core. After alveolarization (first 2 postnatal weeks in rats) the alveolar septa mature: their capillary layers merge, the amount of connective tissue decreases, and the mature lung parenchyma is formed (second and third week). During the first 3 wk of life the role of tissue transglutaminase (tTG) was studied in rat lung by immunostaining of cryostat and paraffin sections, by Northern and Western blotting, and by a quantitative determination of gamma-glutamyl-epsilon-lysine. While enzyme activity and intracellular tTG were already present before term, the enzyme product (gamma-glutamyl-epsilon-lysine-crosslink) and extracellular tTG appeared between postnatal days 10 and 19 in the lung parenchyma. In large blood vessels and large airways, which mature earlier than the parenchyma, both the enzyme product and extracellular tTG had already appeared at the end of the first postnatal week. We conclude that tTG is expressed and externalized into the extracellular matrix of lung shortly before maturation of an organ area. Because tTG covalently and irreversibly crosslinks extracellular matrix proteins, we hypothesize that it may prevent or delay further remodeling of basement membranes and may stabilize other extracellular components, such as microfibrils.
Resumo:
Bees are a key component of biodiversity as they ensure a crucial ecosystem service: pollination. This ecosystem service is nowadays threatened, because bees suffer from agricultural intensification. Yet, bees rarely benefit from the measures established to promote biodiversity in farmland, such as agri-environment schemes (AES). We experimentally tested if the spatio-temporal modification of mowing regimes within extensively managed hay meadows, a widespread AES, can promote bees. We applied a randomized block design, replicated 12 times across the Swiss lowlands, that consisted of three different mowing treatments: 1) first cut not before 15 June (conventional regime for meadows within Swiss AES); 2) first cut not before 15 June, as treatment 1 but with 15% of area left uncut serving as a refuge; 3) first cut not before 15 July. Bees were collected with pan traps, twice during the vegetation season (before and after mowing). Wild bee abundance and species richness significantly increased in meadows where uncut refuges were left, in comparison to meadows without refuges: there was both an immediate (within year) and cumulative (from one year to the following) positive effect of the uncut refuge treatment. An immediate positive effect of delayed mowing was also evidenced in both wild bees and honey bees. Conventional AES could easily accommodate such a simple management prescription that promotes farmland biodiversity and is likely to enhance pollination services.