6 resultados para Margulis Spacetimes
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Lifshitz spacetimes with the critical exponent z = 2 can be obtained by the dimensional reduction of Schrödinger spacetimes with the critical exponent z = 0. The latter spacetimes are asymptotically AdS solutions of AdS gravity coupled to an axion–dilaton system and can be uplifted to solutions of type IIB supergravity. This basic observation is used to perform holographic renormalization for four-dimensional asymptotically z = 2 locally Lifshitz spacetimes by the Scherk–Schwarz dimensional reduction of the corresponding problem of holographic renormalization for five-dimensional asymptotically locally AdS spacetimes coupled to an axion–dilaton system. We can thus define and characterize a four-dimensional asymptotically locally z = 2 Lifshitz spacetime in terms of five-dimensional AdS boundary data. In this setup the four-dimensional structure of the Fefferman–Graham expansion and the structure of the counterterm action, including the scale anomaly, will be discussed. We find that for asymptotically locally z = 2 Lifshitz spacetimes obtained in this way, there are two anomalies each with their own associated nonzero central charge. Both anomalies follow from the Scherk–Schwarz dimensional reduction of the five-dimensional conformal anomaly of AdS gravity coupled to an axion–dilaton system. Together, they make up an action that is of the Horava–Lifshitz type with a nonzero potential term for z = 2 conformal gravity.
Resumo:
We consider black probes of Anti-de Sitter and Schrödinger spacetimes embedded in string theory and M-theory and construct perturbatively new black hole geometries. We begin by reviewing black string configurations in Anti-de Sitter dual to finite temperature Wilson loops in the deconfined phase of the gauge theory and generalise the construction to the confined phase. We then consider black strings in thermal Schrödinger, obtained via a null Melvin twist of the extremal D3-brane, and construct three distinct types of black string configurations with spacelike as well as lightlike separated boundary endpoints. One of these configurations interpolates between the Wilson loop operators, with bulk duals defined in Anti-de Sitter and another class of Wilson loop operators, with bulk duals defined in Schrödinger. The case of black membranes with boundary endpoints on the M5-brane dual to Wilson surfaces in the gauge theory is analysed in detail. Four types of black membranes, ending on the null Melvin twist of the extremal M5-brane exhibiting the Schrödinger symmetry group, are then constructed. We highlight the differences between Anti-de Sitter and Schrödinger backgrounds and make some comments on the properties of the corresponding dual gauge theories.
Resumo:
Lifshitz space–times with critical exponent z = 2 can be obtained by dimensional reduction of Schrödinger space–times with critical exponent z = 0. The latter space–times are asymptotically anti-de Sitter (AdS) solutions of AdS gravity coupled to an axion–dilaton system (or even just a massless scalar field). This basic observation is used to perform holographic renormalization for four-dimensional asymptotically locally Lifshitz space–times by dimensional reduction of the corresponding problem of holographic renormalization for five-dimensional asymptotically AdS space–times coupled to an axion–dilaton system. In this setup the four-dimensional structure of the Lifshitz – Fefferman-Graham expansion and the structure of the counterterm action, including the scale anomaly, will be summarized.
Resumo:
Using the asymptotic form of the bulk Weyl tensor, we present an explicit approach that allows us to reconstruct exact four-dimensional Einstein spacetimes which are algebraically special with respect to Petrov’s classification. If the boundary metric supports a traceless, symmetric and conserved complex rank-two tensor, which is related to the boundary Cotton and energy-momentum tensors, and if the hydrodynamic congruence is shearless, then the bulk metric is exactly resummed and captures modes that stand beyond the hydrodynamic derivative expansion. We illustrate the method when the congruence has zero vorticity, leading to the Robinson-Trautman spacetimes of arbitrary Petrov class, and quote the case of non-vanishing vorticity, which captures the Plebański-Demiański Petrov D family.