3 resultados para Mantle sources

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to estimate the Mo isotope composition and Mo abundance in the Bulk Silicate Earth (BSE), a total of thirty komatiite samples from five localities on three continents were analyzed using an isotope dilution double spike technique. Calculated Mo concentrations of the emplaced komatiite lavas range from 25±325±3 to 66±22 ng/g66±22 ng/g, and the inferred Mo concentrations in the deep mantle sources of the komatiites range between 17±417±4 and 30±12 ng/g30±12 ng/g, with an average value of 23±7 ng/g23±7 ng/g (2SE). This average value represents our best estimate for the Mo concentration in the BSE; it is identical, within the uncertainty, to published previous estimates of 39±16 ng/g39±16 ng/g, but is at least a factor of 2 more precise. The Mo isotope compositions of the komatiite mantle sources overlap within uncertainty and range from View the MathML sourceδMo98=−0.04±0.28 to 0.11±0.10‰0.11±0.10‰, with an average of 0.04±0.06‰0.04±0.06‰ (2SE). This value is analytically indistinguishable from published Mo isotope compositions of ordinary and enstatite chondrites and represents the best estimate for the Mo isotope composition of the BSE. The inferred δ98Mo for the BSE is therefore lighter than the suggested average of the upper continental crust (0.3 to 0.4‰). Thus, from the mass balance standpoint, a reservoir with lighter Mo isotope composition should exist in the Earth's mantle; this reservoir can potentially be found in subducted oceanic crust. The similarity of δ98Mo between chondritic meteorites and estimates for the BSE from this study indicates that during the last major equilibration between Earth's core and mantle, i.e., the one that occurred during the giant impact that produced the Moon, chemical and isotopic equilibrium of Mo between Fe metal of the core and the silicate mantle was largely achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large-scale tectonic processes introduce a range of crustal lithologies into the Earth's mantle. These lithologies have been implicated as sources of compositional heterogeneity in mantle-derived magmas. The model being explored here assumes the presence of widely dispersed fragments of residual eclogite (derived from recycled oceanic crust), stretched and stirred by convection in the mantle. Here we show with an experimental study that these residual eclogites continuously melt during upwelling of such heterogeneous mantle and we characterize the melting reactions and compositional changes in the residue minerals. The chemical exchange between these partial melts and more refractory peridotite leads to a variably metasomatised mantle. Re-melting of these metasomatised peridotite lithologies at given pressures and temperatures results in diverse melt compositions, which may contribute to the observed heterogeneity of oceanic basalt suites. We also show that heterogeneous upwelling mantle is subject to diverse local freezing, hybridization and carbonate-carbon-silicate redox reactions along a mantle adiabat.