5 resultados para Manoeuvres

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: Testing for inducible myocardial ischaemia is one of the most important diagnostic procedures and has a strong impact on clinical decision-making. Current standard protocols are typically limited by the required infusion of vasodilatory substances. Recent data indicate that changes of myocardial oxygenation induced by hyperventilation and breath-holds can be monitored by oxygenation-sensitive (OS) cardiovascular magnetic resonance (CMR) and may be useful for assessing coronary vascular function. As tests using breathing manoeuvres may be safer, easier, and more comfortable than vasodilator stress agent infusion, we compared its impact on myocardial oxygenation with that of a standard adenosine infusion protocol. METHODS AND RESULTS: In 20 healthy volunteers, we assessed changes of myocardial oxygenation using OS-CMR at 3 T during adenosine infusion (140 µg/kg/min, i.v.) and during voluntary breathing manoeuvres: a maximal breath-hold following normal breathing and a maximal breath-hold following 60 s of hyperventilation. The study was successfully completed in 19 subjects. There was a significantly stronger myocardial response for hyperventilation (decrease of -10.6 ± 7.8%) and the following breath-hold (increase of 14.8 ± 6.6%) than adenosine (3.9 ± 6.5%), whereas a simple maximal voluntary breath-hold yielded a similar signal intensity increase (3.1 ± 3.9%). Subjective side effects occurred significantly more often with adenosine, especially in females. CONCLUSIONS: Hyperventilation combined with a subsequent long breath-hold and hyperventilation alone both have a greater impact on myocardial oxygenation changes than an intravenous administration of a standard dose of adenosine, as assessed by OS-CMR. Breathing manoeuvres may be more efficient, safer, and more comfortable than adenosine for the assessment of the coronary vasomotor response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background: The aim of this study was to examine mechanical, microbiologic, and morphologic changes of the appendicle rim to assess if it is appropriate to dissect the appendix with the ultrasound-activated scalpel (UAS) during laparoscopic appendectomy. Materials and Methods: After laparoscopic resection of the appendix, using conventional Roeder slings, we investigated 50 appendicle rims with an in vitro procedure. The overall time of dissection of the mesoappendix with UAS was noted. Following removal, the appendix was dissected in vitro with the UAS one cme from the resection rim. Seal-burst pressures were recorded. Bacterial cultures of the UAS-resected rim were compared with those of the scissors resected rim. Tissue changes were quantified histologically with hematoxylin and eosin (HE) stains. Results: The average time to dissect the mesoappendix was 228 seconds (25-900). Bacterial culture growths were less in the UAS-resected probes (7 versus 36 positive probes; (p > 0.01). HE-stained tissues revealed mean histologic changes in the lamina propria muscularis externa of 2 mm depth. The seal-burst pressure levels of the appendicle lumen had a mean of 420 mbar. Seal-burst pressures and depths of histologic changes were not dependent on the different stages of appendicitis investigated, gender, or age groups. Seal-burst pressure levels were not related to different depths of tissue changes (P = 0.64). Conclusions: The UAS is a rapid instrument for laparoscopic appendectomy and appears to be safe with respect to stability, sterility and tissue changes. It avoids complex time consuming instrument change manoeuvres and current transmission, which may induce intra- and postoperative complications. Our results suggest that keeping a safety margin of at least 5 mm from the bowel would be sufficient to avoid thermal damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Fractional exhaled nitric oxide (FENO), a non-invasive marker of eosinophilic airway inflammation, is increasingly used for diagnostic and therapeutic decisions in adult and paediatric asthma. Standardized guidelines for the measurement of FENO recommend performing FENO measurements before rather than after bronchial provocation tests. OBJECTIVE To investigate whether FENO levels decrease after a Mannitol dry powder (MDP) challenge in a clinical setting, and whether the extent of the decrease is influenced by number of MDP manoeuvres, baseline FENO, atopy and doctor diagnosed asthma. METHODS Children aged 6-16 years, referred for possible reactive airway disease to a respiratory outpatient clinic, performed an MDP challenge (Aridol®, Pharmaxis, Australia). FENO was measured in doublets immediately before and after the challenge test using the portable NIOX MINO® device (Aerocrine, Stockholm, Sweden). We analysed the data using Kruskal-Wallis rank tests, Wilcoxon signed rank tests and multivariable linear regressions. RESULTS One hundred and seven children completed both tests (mean±SD age 11.5±2.8 years). Overall, median (interquartile range) FENO decreased slightly by -2.5 ppb (-7.0, -0.5), from 18.5 ppb (10.5, 45.5) before the MDP challenge to 16.5 ppb thereafter (8.5, 40.5; p<0.001). In all participants, the change in FENO was smaller than one standard deviation of the baseline mean. The % fall in FENO was smaller in children with less MDP manoeuvres (e.g. higher bronchial responsiveness; p = 0.08) but was not influenced by levels of baseline FENO (p = 0.68), atopy (p = 0.84) or doctor diagnosed asthma (p = 0.93). CONCLUSION MDP challenge test influences FENO values but differences are small and clinically barely relevant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The robotic approach in thoracic surgery has rapidly gained popularity in recent years. As with the introduction of any new technology, this warrants not only adaptation of the operative technique itself, but also the evolution of appropriate troubleshooting strategies. A selected number of helpful tips and technical procedural manoeuvres have been compiled to prevent intraoperative problems, as well as to overcome challenging situations that can arise during robotic lobectomies. In robotic surgery, as opposed to open surgery or video-assisted thoracic surgery, these tips serve an important purpose for the operating surgeon, as well as the entire surgical team involved in the procedure. All the assembled recommendations have proved their effectiveness and have been successfully used by the authors in many procedures. Furthermore, these manoeuvres have been found to be of great importance in the training and proctoring of thoracic surgeons, fellows and residents (bed-side assistants). This guide of clearly arranged tips and troubleshooting strategies offers surgeons a useful tool to overcome difficult situations in robotic lobectomy and preferably improve the reproducibility and safety of their procedures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS CO₂ is an intrinsic vasodilator for cerebral and myocardial blood vessels. Myocardial vasodilation without a parallel increase of the oxygen demand leads to changes in myocardial oxygenation. Because apnoea and hyperventilation modify blood CO₂, we hypothesized that voluntary breathing manoeuvres induce changes in myocardial oxygenation that can be measured by oxygenation-sensitive cardiovascular magnetic resonance (CMR). METHODS AND RESULTS Fourteen healthy volunteers were studied. Eight performed free long breath-hold as well as a 1- and 2-min hyperventilation, whereas six aquatic athletes were studied during a 60-s breath-hold and a free long breath-hold. Signal intensity (SI) changes in T₂*-weighted, steady-state free precession, gradient echo images at 1.5 T were monitored during breathing manoeuvres and compared with changes in capillary blood gases. Breath-holds lasted for 35, 58 and 117 s, and hyperventilation for 60 and 120 s. As expected, capillary pCO₂ decreased significantly during hyperventilation. Capillary pO₂ decreased significantly during the 117-s breath-hold. The breath-holds led to a SI decrease (deoxygenation) in the left ventricular blood pool, while the SI of the myocardium increased by 8.2% (P = 0.04), consistent with an increase in myocardial oxygenation. In contrast, hyperventilation for 120 s, however, resulted in a significant 7.5% decrease in myocardial SI/oxygenation (P = 0.02). Change in capillary pCO₂ was the only independently correlated variable predicting myocardial oxygenation changes during breathing manoeuvres (r = 0.58, P < 0.01). CONCLUSION In healthy individuals, breathing manoeuvres lead to changes in myocardial oxygenation, which appear to be mediated by CO₂. These changes can be monitored in vivo by oxygenation-sensitive CMR and thus, may have value as a diagnostic tool.