6 resultados para Mandibular growth

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: The aim of the study was to conduct a long-term prospective follow-up on the stability of soft tissues after bilateral sagittal split osteotomy (BSSO) with rigid internal fixation to set back the mandible. PATIENTS AND METHODS: Seventeen consecutive patients (6 females, 11 males) were re-examined 12.7 years (T5) after surgery. The precedent follow-ups included: before surgery (T1), 5 days (T2) after surgery, 6.6 months (T3) after surgery, and 14.4 months after (T4) surgery. Lateral cephalograms were traced by hand, digitized, and evaluated with the Dentofacial Planner program (Dentofacial Software, Toronto, Canada). The x-axis for the system of coordinates ran through Sella (point 0) and the line NSL -7 degrees. RESULTS: The net effect of the soft tissue chin (soft tissue pogonion) was 79% of the setback at pogonion. At the lower lip (labrale inferior) it was 100% of the setback at lower incisor position. Point B' followed point B to 99%. Labrale inferior and menton' also showed a significant backward, as well as a downward, movement (T5 to T2). Gender correlated significantly (P = .004) with the anterior displacement of point B' and pogonion' (P = .012). The soft tissue relapse 12.7 years after BSSO setback surgery at point B' was 3% and 13% at pogonion'. CONCLUSION: Among the reasons for 3-dimensional long-term soft tissue changes of shape, the surgical technique, the normal process of human aging, the initial growth direction, and remodeling processes must be considered. Growth direction positively influenced the long-term outcome of setback surgery in female compared with male patients because further posterior movement of the mandibular soft tissue occurred.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the study was to conduct a long-term follow-up investigation of the stability of hard and soft tissues after bilateral sagittal split osteotomy (BSSO) with rigid internal (RIF) fixation to advance the mandible. Sixteen consecutive patients (12 females and 4 males, mean age 21.4 years) were available for re-examination 12.7 years (T5) after surgery. The preceding follow-ups were before (T1), and 5 days (T2), 7.3 months (T3), and 13.9 months (T4) after surgery. Lateral cephalograms were traced by hand, digitized, and evaluated with the Dentofacial Planner program. The x-axis for the system of co-ordinates ran through sella (point zero) and the line NSL -7 degrees. Thus, the program determined the x- and y-values of each variable and the usual angles and distances. Statistical analysis was carried out using Wilcoxon's matched-pair signed-ranks test with Bonferroni adjustments. The relationships between the examined variables were analysed by Spearman rank correlation coefficients. The backward relapse at point B (T5) was 2.42 mm, or 50 per cent, and at pogonion 3.21 mm, or 60 per cent of the initial advancement. The mean net effect at T5 on the labial fold (soft tissue point B) was 94 per cent of the advancement at point B. For the soft tissue chin (soft tissue pogonion), it was 119 per cent of the advancement at pogonion. The net effect on the lower lip (labrale inferior) was 55 per cent of the advancement at incision inferior. The amount of the surgical advancement of the mandible was correlated with the long-term relapse in point B. Among possible reasons for this relapse are the initial soft tissue profile, the initial growth direction, and the remodelling processes of the hard tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the study was to conduct a long-term follow-up on the stability of the hard tissues after bilateral sagittal split osteotomy (BSSO) with rigid internal fixation (RIF)to set back the mandible and to compare it with that of mandibular advancement performed by the same team of surgeons and with the same examination protocol. Seventeen consecutive patients (6 females and 11 males) could be re-examined 12.7 years (T5) after surgery. The previous examinations were before surgery (T1), 5 days (T2), and 6.6 (T3) and 14.4 (T4) months after surgery. Lateral cephalograms were traced by hand, digitized, and evaluated with the Dentofacial Planner software program. The x-axis for the system of co-ordinates ran through sella (point zero) and the line nasion-sella-line minus 7 degrees. The program determined the x- and y-values of each variable and the usual angles and distances. The effects of treatment were determined with Wilcoxon matched pairs, signed ranks test, with Bonferroni adjustment, and the relationship between variables with Spearman rank correlation coefficient. Relapse at point B was 0.94 mm or 15 per cent and at pogonion 1.46 mm or 21 per cent of the initial setback at T5. Relapse was mainly short-term (T4-T2), 13 per cent for point B and 17 per cent for pogonion. Gender correlated significantly with relapse (T5-T2) at point B (P = 0.002) and pogonion (P = 0.021), i.e. females in contrast to males showed further distalization of the mandible instead of relapse. No correlations were seen for age or the amount of surgical setback. The long-term results in mandibular setback patients were more stable when compared with the mandibular advancement patients examined previously. The initial soft tissue profile, the initial growth direction, and the remodelling processes of the hard tissues must be considered as reasons for long-term relapse. Growth direction positively influenced the long-term results in females: further distalization of the mandible occurred.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To retrospectively evaluate the influence of hyoid bone resection according to Sistrunk in early age due to a thyroglossal duct cyst on craniofacial growth. MATERIALS AND METHODS: We retrospectively examined 10 patients (2 females and 8 males) having had hyoid bone resection according to Sistrunk due to thyroglossal duct cysts by lateral cephalograms taken before orthodontic treatment (mean, 17.1 years; range, 8.6-31.9 years). Surgery was carried out at a mean age of 4.4 years (range, 0.37-9.8 years). All lateral cephalograms were evaluated and traced by hand. Descriptive statistics were calculated, and data from each patient were compared individually with corresponding standard values (age and gender) from Bathia and Leighton. RESULTS: With regard to sagittal parameters, the SNB angles were by trend too small and the ANB angles were too large. However, the ratio of mandibular to maxillary length showed that the patients had a mandible that was too large or maxilla that was too small. With regard to vertical parameters, large deviations from normal values in both directions (hyperdivergent to hypodivergent pattern) could be detected when we analyzed NSL/ML', NL/ML', and NSL/NL. With regard to dental parameters, the majority of the patients had retroclined upper (IsL/NL, IsL/N-A) and lower (IiL/ML, IiL/N-B) incisors. CONCLUSIONS: Several vertical and horizontal skeletal and dental cephalometric parameters were shown to be different by trend when compared with control values. A possible negative impact on craniofacial growth potential and direction as a result of hyoid resection in early age according to Sistrunk cannot be excluded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE Antiseptic solutions are commonly used in dentistry for a number of sterilization procedures, including harvesting of bone chips, irrigation of extraction sockets, and sterilization of osteonecrotic bone. Despite its widespread use, little information is available regarding the effects of various antiseptic solutions on bone cell viability, morphology, and the release of growth factors. MATERIALS AND METHODS The antiseptic solutions included 1) 0.5% povidone iodine (PI), 2) 0.2% chlorhexidine diguluconate (CHX), 3) 1% hydrogen peroxide (H2O2), and 4) 0.25% sodium hypochlorite (HYP). Bone samples collected from porcine mandibular cortical bone were rinsed in the antiseptic solutions for 10 minutes and assessed for cell viability using an MTS assay and protein release of transforming growth factor (TGF-β1), bone morphogenetic protein 2 (BMP2), vascular endothelial growth factor (VEGF), interleukin (IL)-1β, and receptor activator of nuclear factor κB ligand (RANKL) using an enzyme-linked immunosorbent assay at 15 minutes and 4 hours after rinsing. RESULTS After antiseptic rinsing, changes to the surface protein content showed marked alterations, with an abundant protein layer remaining on CHX-rinsed bone samples. The amount of surface protein content gradually decreased in the following order: CHX, H2O2, PI, and HYP. A similar trend was also observed for the relative cell viability from within bone samples after rinsing, with up to 6 times more viable cells found in the CHX-rinsed bone samples than in the HYP- and PI-rinsed samples. An analysis of the growth factors found that both HYP and PI had significantly lower VEGF and TGF-β1 protein release from bone samples at 15 minutes and 4 hours after rinsing compared with CHX and H2O2. A similar trend was observed for RANKL and IL-1β protein release, although no change was observed for BMP2. CONCLUSIONS The results from the present study have demonstrated that antiseptic solutions present with very different effects on bone samples after 10 minutes of rinsing. Rinsing with CHX maintained significantly higher cell viability and protein release of growth factors potent to the bone remodeling cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Placement of a single-tooth implant should be performed when a patient's facial growth has ceased. In this retrospective observational study, we evaluated if there was a difference in the timing of cessation of craniofacial growth in short, average, and long facial types. Based on the value of the angle between cranial base and mandibular plane (SN/MP angle), three groups comprising 48 subjects with short facial type (SF; SN/MP ≤28°), 77 with average facial type (AF; SN/MP ≥31.5° and ≤34.5°), and 44 with long facial type (LF; SN/MP ≥38°) were selected. Facial growth was assessed on lateral cephalograms taken at 15.4 years of age, and 2, 5, and 10 years later. Variables were considered to be stable when the difference between two successive measurements was less than 1 mm or 1°. We found no difference between facial types in the timing of cessation of facial growth. Depending on the variable, the mean age when variables became stable ranged from 18.0 years (Is-Pal in LF group) to 22.0 years (SN/MP in LF group). However, facial growth continued at the last follow-up in approximately 20% subjects. This study demonstrates that facial type is not associated with the timing of cessation of facial growth.