5 resultados para Manas River Valley

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern mixed alluvial-bedrock channels in mountainous areas provide natural laboratories for understanding the time scales at which coarse-grained material has been entrained and transported from their sources to the adjacent sedimentary sink, where these deposits are preserved as conglomerates. This article assesses the shear stress conditions needed for the entrainment of the coarse-bed particles in the Glogn River that drains the 400 km2 Val Lumnezia basin, eastern Swiss Alps. In addition, quantitative data are presented on sediment transport patterns in this stream. The longitudinal stream profile of this river is characterized by three ca 500 m long knickzones where channel gradients range from 0·02 to 0·2 m m−1, and where the valley bottom confined into a <10 m wide gorge. Downstream of these knickzones, the stream is flat with gradients <0·01 m m−1 and widths ≥30 m. Measurements of the grain-size distribution along the trunk stream yield a mean D84 value of ca 270 mm, whereas the mean D50 is ca 100 mm. The consequences of the channel morphology and the grain-size distribution for the time scales of sediment transport were explored by using a one-dimensional step-backwater hydraulic model (Hydrologic Engineering Centre – River Analysis System). The results reveal that, along the entire trunk stream, a two to 10 year return period flood event is capable of mobilizing both the D50 and D84 fractions where the Shields stress exceeds the critical Shields stress for the initiation of particle motion. These return periods, however, varied substantially depending on the channel geometry and the pebble/boulder size distribution of the supplied material. Accordingly, the stream exhibits a highly dynamic boulder cover behaviour. It is likely that these time scales might also have been at work when coarse-grained conglomerates were constructed in the geological past.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Central Anatolian Plateau (CAP) in Turkey is a relatively small plateau (300 × 400 km) with moderate average elevations of ∼1 km situated between the Pontide and Tauride orogenic mountain belts. Kızılırmak, which is the longest river (1355 km) within the borders of Turkey, flows within the CAP and slowly incises into lacustrine and volcaniclastic units before finally reaching the Black Sea. We dated the Cappadocia section of the Kızılırmak terraces in the CAP by using cosmogenic burial and isochron-burial dating methods with 10Be and 26Al as their absolute dating can provide insight into long-term incision rates, uplift and climatic changes. Terraces at 13, 20, 75 and 100 m above the current river indicate an average incision rate of 0.051 ± 0.01 mm/yr (51 ± 1 m/Ma) since ∼1.9 Ma. Using the base of a basalt fill above the modern course of the Kızılırmak, we also calculated 0.05–0.06 mm/yr mean incision and hence rock uplift rate for the last 2 Ma. Although this rate might be underestimated due to normal faulting along the valley sides, it perfectly matches our results obtained from the Kızılırmak terraces. Although up to 5–10 times slower, the Quaternary uplift of the CAP is closely related to the uplift of the northern and southern plateau margins respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the Lluta Valley, northern Chile, climate is hyperarid and vegetation is restricted to the valley floors and lowermost footslopes. Fossil tree trunks and leaves of predominantly Escallonia angustifolia, however, are abundant up to ∼15 m above the present valley floor, where they are intercalated with slope deposits, reflecting higher water levels in the past. A total of 17 samples have been radiocarbon dated, yielding ages between 38 and 15k cal a BP. The youngest ages of 15.4k cal a BP are interpreted as reflecting the beginning of river incision and lowering of the valley floor, impeding the further growth of trees at higher parts of the slopes. The most plausible scenario for this observation is intensified river incision after 15.4k cal a BP due to increased stream power and runoff from the Río Lluta headwaters in the Western Cordillera and Altiplano corresponding to the highstand of the Tauca and Central Andean Pluvial Event (CAPE) wet phase.