10 resultados para Management Shock
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The aim of this survey was to investigate clinicians' current approach to the haemodynamic management and resuscitation endpoints in septic shock.
Resumo:
Maintaining an adequate tissue oxygen delivery (DO(2)) and consumption (VO(2)) is crucial in the treatment of septic patients. A fall in V0(2) is associated with a higher mortality. The early recognition of shock or tissue hypo perfusion impacts on patient prognosis. In occasions, hypovolemia or important regional oxygen debts are not recognized, since macro homodynamic variables have been compensated. In this situation, the use of metabolic hypo perfusion markers such as lactate, central venous oxygen saturation and gastric goniometry, can be helpful. However, interpretation of these markers should be cautious and always considering the overall clinical status of the patient. In the initial stages of sepsis, the dependency of V0(2) on DO(2) predominates as histopathological mechanism of multiple organic failure. In late stages, other factors predominate as determinants of multiple organic failure and mortality, such as hyper or hypo immune response, microcirculatory alterations and cytopathic hypoxia.
Resumo:
Early reperfusion with prompt re-establishment of coronary blood flow improves survival in patients suffering from acute ST-elevation myocardial infarction (STEMI). Leaving systemic thrombolysis for primary percutaneous coronary intervention (PCI) is justified by clinical results in favor of PCI. Nevertheless, primary PCI necessitates additional transfer time and requires an efficient territorial networking. The present article summarizes the up-to-dated management of patients with acute STEMI and/or overt cardiogenic shock.
Resumo:
Unprotected left main (ULM) coronary artery disease is encountered in 3%-10% of coronary angiograms and is associated with high mortality. The survival of patients with ULM disease presenting with acute coronary syndromes (ACS) depends on different variables and is lowest in those with cardiogenic shock (CS). The aim of the present study was to estimate the impact of baseline characteristics on the subsequent clinical outcome in patients treated by percutaneous coronary intervention (PCI) of ULM for ACS.
Resumo:
PURPOSE OF REVIEW: This review will discuss the rationale and clinical utility of percutaneous left ventricular assist devices in the management of patients with cardiogenic shock. RECENT FINDINGS: Left ventricular assist devices maintain partial or total circulatory support in case of severe left ventricular failure. Currently, two percutaneous left ventricular assist devices are available for clinical use: the TandemHeart and the Impella Recover LP system. Compared with the intraaortic balloon pump, the TandemHeart has been shown to significantly reduce preload and to augment cardiac output. In a randomized comparison between the TandemHeart and intraaortic balloon pump support in patients with cardiogenic shock, the improved cardiac index afforded by the left ventricular assist device resulted in a more rapid decrease in serum lactate and improved renal function. There were, however, no significant differences with respect to 30-day mortality, and complications including limb ischemia and severe bleeding were more frequent with left ventricular assist devices than intraaortic balloon pump support. SUMMARY: The advent of percutaneous left ventricular assist devices constitutes an important advance in the management of patients with severe cardiogenic shock and may serve as bridge to recovery or heart transplantation in carefully selected patients. While improvement of hemodynamic parameters appears promising, it remains to be determined whether this benefit translates into improved clinical outcome.
Resumo:
Cardiogenic shock complicates up to 7% of ST-segment elevation myocardial infarctions and 2.5% of non-ST-segment elevation myocardial infarctions, with an associated mortality of 50% to 70%. Primary cardiac pump failure is followed by secondary vital organ hypoperfusion and subsequent activation of various cascade pathways, resulting in a downward spiral leading to multiple organ failure and, ultimately, death. Immediate restoration of cardiac output by means of percutaneous ventricular assist devices restores hemodynamic -stability and is an important advance in the management of patients with severe left ventricular dysfunction and cardiogenic shock. This article reviews available evidence supporting the use of percutaneous ventricular assist devices in patients suffering from cardiogenic shock.
Resumo:
INTRODUCTION: Despite the key role of hemodynamic goals, there are few data addressing the question as to which hemodynamic variables are associated with outcome or should be targeted in cardiogenic shock patients. The aim of this study was to investigate the association between hemodynamic variables and cardiogenic shock mortality. METHODS: Medical records and the patient data management system of a multidisciplinary intensive care unit (ICU) were reviewed for patients admitted because of cardiogenic shock. In all patients, the hourly variable time integral of hemodynamic variables during the first 24 hours after ICU admission was calculated. If hemodynamic variables were associated with 28-day mortality, the hourly variable time integral of drops below clinically relevant threshold levels was computed. Regression models and receiver operator characteristic analyses were calculated. All statistical models were adjusted for age, admission year, mean catecholamine doses and the Simplified Acute Physiology Score II (excluding hemodynamic counts) in order to account for the influence of age, changes in therapies during the observation period, the severity of cardiovascular failure and the severity of the underlying disease on 28-day mortality. RESULTS: One-hundred and nineteen patients were included. Cardiac index (CI) (P = 0.01) and cardiac power index (CPI) (P = 0.03) were the only hemodynamic variables separately associated with mortality. The hourly time integral of CI drops <3, 2.75 (both P = 0.02) and 2.5 (P = 0.03) L/min/m2 was associated with death but not that of CI drops <2 L/min/m2 or lower thresholds (all P > 0.05). The hourly time integral of CPI drops <0.5-0.8 W/m2 (all P = 0.04) was associated with 28-day mortality but not that of CPI drops <0.4 W/m2 or lower thresholds (all P > 0.05). CONCLUSIONS: During the first 24 hours after intensive care unit admission, CI and CPI are the most important hemodynamic variables separately associated with 28-day mortality in patients with cardiogenic shock. A CI of 3 L/min/m2 and a CPI of 0.8 W/m2 were most predictive of 28-day mortality. Since our results must be considered hypothesis-generating, randomized controlled trials are required to evaluate whether targeting these levels as early resuscitation endpoints can improve mortality in cardiogenic shock.
Resumo:
AIMS To highlight differences between the most recent guidelines of the European Society of Cardiology (ESC) and the American College of Cardiology Foundation/American Heart Association (ACCF/AHA) on the management of ST-elevation myocardial infarction (STEMI). METHODS AND RESULTS ESC 2012 and ACCF/AHA 2013 guidelines on the management of STEMI were systematically reviewed for consistency. Recommendations were matched, directly compared in terms of class of recommendation and level of evidence, and classified as "identical", "overlapping", or "different". Out of 32 recommendations compared, 26 recommendations (81%) were classified as identical or overlapping, and six recommendations (19%) were classified as different. Most diverging recommendations were related to minor differences in class of recommendation between the two documents. This applies to recommendations for reperfusion therapy >12 hours after symptom onset, immediate transfer of all patients after fibrinolytic therapy, rescue PCI for patients with failed fibrinolysis, and intra-aortic balloon pump use in patients with cardiogenic shock. More substantial differences were observed with respect to the type of P2Y12 inhibitor and duration of dual antiplatelet therapy. CONCLUSIONS The majority of recommendations for the management of STEMI according to ESC and ACCF/AHA guidelines were identical or overlapping. Differences were explained by gaps in available evidence, in which case expert consensus differed between European and American guidelines due to divergence in interpretation, perception, and culture of medical practice. Systematic comparisons of European and American guidelines are valuable and indicate that interpretation of available evidence leads to agreement in the vast majority of topics. The latter is indirect support for the process of review and guideline preparation on both sides of the Atlantic.
Resumo:
PURPOSE Management of ureteral stones remains controversial. To determine whether optimizing extracorporeal shock wave lithotripsy (ESWL) delivery rates improves treatment of solitary ureteral stones, we compared outcomes of two SW delivery rates in a prospective, randomized trial. MATERIALS AND METHODS From July 2010 to October 2012, 254 consecutive patients were randomized to undergo ESWL at SW delivery rates of either 60 pulses (n=130) or 90 pulses (n=124) per min. The primary endpoint was stone-free rate at 3-month follow-up. Secondary endpoints included stone disintegration, treatment time, complications, and the rate of secondary treatments. Descriptive statistics were used to compare endpoints between the two groups. Adjusted odds ratios and 95% confidence intervals were calculated to assess predictors of success. RESULTS The stone-free rate at 3 months was significantly higher in patients who underwent ESWL at a SW delivery rate of 90 pulses per min than in those receiving 60 pulses (91% vs. 80%, p=0.01). Patients with proximal and mid-ureter stones, but not those with distal ureter stones, accounted for the observed difference (100% vs. 83%; p=0.005; 96% vs. 73%, p=0.03; and 81% vs. 80%, p=0.9, respectively). Treatment time, complications, and the rate of secondary treatments were comparable between the two groups. In multivariable analysis, SW delivery rate of 90 pulses per min, proximal stone location, stone density, stone size and the absence of an indwelling JJ stent were independent predictors of success. CONCLUSIONS Optimization of ESWL delivery rates can achieve excellent results for ureteral stones.
Resumo:
The ATLS program by the American college of surgeons is probably the most important globally active training organization dedicated to improve trauma management. Detection of acute haemorrhagic shock belongs to the key issues in clinical practice and thus also in medical teaching. (In this issue of the journal William Schulz and Ian McConachrie critically review the ATLS shock classification Table 1), which has been criticized after several attempts of validation have failed [1]. The main problem is that distinct ranges of heart rate are related to ranges of uncompensated blood loss and that the heart rate decrease observed in severe haemorrhagic shock is ignored [2]. Table 1. Estimated blood loos based on patient's initial presentation (ATLS Students Course Manual, 9th Edition, American College of Surgeons 2012). Class I Class II Class III Class IV Blood loss ml Up to 750 750–1500 1500–2000 >2000 Blood loss (% blood volume) Up to 15% 15–30% 30–40% >40% Pulse rate (BPM) <100 100–120 120–140 >140 Systolic blood pressure Normal Normal Decreased Decreased Pulse pressure Normal or ↑ Decreased Decreased Decreased Respiratory rate 14–20 20–30 30–40 >35 Urine output (ml/h) >30 20–30 5–15 negligible CNS/mental status Slightly anxious Mildly anxious Anxious, confused Confused, lethargic Initial fluid replacement Crystalloid Crystalloid Crystalloid and blood Crystalloid and blood Table options In a retrospective evaluation of the Trauma Audit and Research Network (TARN) database blood loss was estimated according to the injuries in nearly 165,000 adult trauma patients and each patient was allocated to one of the four ATLS shock classes [3]. Although heart rate increased and systolic blood pressure decreased from class I to class IV, respiratory rate and GCS were similar. The median heart rate in class IV patients was substantially lower than the value of 140 min−1 postulated by ATLS. Moreover deterioration of the different parameters does not necessarily go parallel as suggested in the ATLS shock classification [4] and [5]. In all these studies injury severity score (ISS) and mortality increased with in increasing shock class [3] and with increasing heart rate and decreasing blood pressure [4] and [5]. This supports the general concept that the higher heart rate and the lower blood pressure, the sicker is the patient. A prospective study attempted to validate a shock classification derived from the ATLS shock classes [6]. The authors used a combination of heart rate, blood pressure, clinically estimated blood loss and response to fluid resuscitation to classify trauma patients (Table 2) [6]. In their initial assessment of 715 predominantly blunt trauma patients 78% were classified as normal (Class 0), 14% as Class I, 6% as Class II and only 1% as Class III and Class IV respectively. This corresponds to the results from the previous retrospective studies [4] and [5]. The main endpoint used in the prospective study was therefore presence or absence of significant haemorrhage, defined as chest tube drainage >500 ml, evidence of >500 ml of blood loss in peritoneum, retroperitoneum or pelvic cavity on CT scan or requirement of any blood transfusion >2000 ml of crystalloid. Because of the low prevalence of class II or higher grades statistical evaluation was limited to a comparison between Class 0 and Class I–IV combined. As in the retrospective studies, Lawton did not find a statistical difference of heart rate and blood pressure among the five groups either, although there was a tendency to a higher heart rate in Class II patients. Apparently classification during primary survey did not rely on vital signs but considered the rather soft criterion of “clinical estimation of blood loss” and requirement of fluid substitution. This suggests that allocation of an individual patient to a shock classification was probably more an intuitive decision than an objective calculation the shock classification. Nevertheless it was a significant predictor of ISS [6]. Table 2. Shock grade categories in prospective validation study (Lawton, 2014) [6]. Normal No haemorrhage Class I Mild Class II Moderate Class III Severe Class IV Moribund Vitals Normal Normal HR > 100 with SBP >90 mmHg SBP < 90 mmHg SBP < 90 mmHg or imminent arrest Response to fluid bolus (1000 ml) NA Yes, no further fluid required Yes, no further fluid required Requires repeated fluid boluses Declining SBP despite fluid boluses Estimated blood loss (ml) None Up to 750 750–1500 1500–2000 >2000 Table options What does this mean for clinical practice and medical teaching? All these studies illustrate the difficulty to validate a useful and accepted physiologic general concept of the response of the organism to fluid loss: Decrease of cardiac output, increase of heart rate, decrease of pulse pressure occurring first and hypotension and bradycardia occurring only later. Increasing heart rate, increasing diastolic blood pressure or decreasing systolic blood pressure should make any clinician consider hypovolaemia first, because it is treatable and deterioration of the patient is preventable. This is true for the patient on the ward, the sedated patient in the intensive care unit or the anesthetized patients in the OR. We will therefore continue to teach this typical pattern but will continue to mention the exceptions and pitfalls on a second stage. The shock classification of ATLS is primarily used to illustrate the typical pattern of acute haemorrhagic shock (tachycardia and hypotension) as opposed to the Cushing reflex (bradycardia and hypertension) in severe head injury and intracranial hypertension or to the neurogenic shock in acute tetraplegia or high paraplegia (relative bradycardia and hypotension). Schulz and McConachrie nicely summarize the various confounders and exceptions from the general pattern and explain why in clinical reality patients often do not present with the “typical” pictures of our textbooks [1]. ATLS refers to the pitfalls in the signs of acute haemorrhage as well: Advanced age, athletes, pregnancy, medications and pace makers and explicitly state that individual subjects may not follow the general pattern. Obviously the ATLS shock classification which is the basis for a number of questions in the written test of the ATLS students course and which has been used for decades probably needs modification and cannot be literally applied in clinical practice. The European Trauma Course, another important Trauma training program uses the same parameters to estimate blood loss together with clinical exam and laboratory findings (e.g. base deficit and lactate) but does not use a shock classification related to absolute values. In conclusion the typical physiologic response to haemorrhage as illustrated by the ATLS shock classes remains an important issue in clinical practice and in teaching. The estimation of the severity haemorrhage in the initial assessment trauma patients is (and was never) solely based on vital signs only but includes the pattern of injuries, the requirement of fluid substitution and potential confounders. Vital signs are not obsolete especially in the course of treatment but must be interpreted in view of the clinical context. Conflict of interest None declared. Member of Swiss national ATLS core faculty.