30 resultados para Magnus II Haraldsson, king of Norway, d. 1069.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: Surfactant protein D (SP-D) deficient mice develop emphysema-like pathology associated with focal accumulations of foamy alveolar macrophages, an excess of surfactant phospholipids in the alveolar space and both hypertrophy and hyperplasia of alveolar type II cells. These findings are associated with a chronic inflammatory state. Treatment of SP-D deficient mice with a truncated recombinant fragment of human SP-D (rfhSP-D) has been shown to decrease the lipidosis and alveolar macrophage accumulation as well as production of proinflammatory chemokines. The aim of this study was to investigate if rfhSP-D treatment reduces the structural abnormalities in parenchymal architecture and type II cells characteristic of SP-D deficiency. METHODS: SP-D knock-out mice, aged 3 weeks, 6 weeks and 9 weeks were treated with rfhSP-D for 9, 6 and 3 weeks, respectively. All mice were sacrificed at age 12 weeks and compared to both PBS treated SP-D deficient and wild-type groups. Lung structure was quantified by design-based stereology at the light and electron microscopic level. Emphasis was put on quantification of emphysema, type II cell changes and intracellular surfactant. Data were analysed with two sided non-parametric Mann-Whitney U-test. MAIN RESULTS: After 3 weeks of treatment, alveolar number was higher and mean alveolar size was smaller compared to saline-treated SP-D knock-out controls. There was no significant difference concerning these indices of pulmonary emphysema within rfhSP-D treated groups. Type II cell number and size were smaller as a consequence of treatment. The total volume of lamellar bodies per type II cell and per lung was smaller after 6 weeks of treatment. CONCLUSION: Treatment of SP-D deficient mice with rfhSP-D leads to a reduction in the degree of emphysema and a correction of type II cell hyperplasia and hypertrophy. This supports the concept that rfhSP-D might become a therapeutic option in diseases that are characterized by decreased SP-D levels in the lung.
Resumo:
To prospectively evaluate a 3-dimensional spoiled gradient-dual-echo (3D SPGR-DE) magnetic resonance imaging (MRI) sequence for the qualitative and quantitative analysis of liver fat content (LFC) in patients with the suspicion of fatty liver disease using histopathology as the standard of reference.
Resumo:
Calretinin (CR) and calbindin D-28k (CB) are cytosolic EF-hand Ca(2+)-binding proteins and function as Ca(2+) buffers affecting the spatiotemporal aspects of Ca(2+) transients and possibly also as Ca(2+) sensors modulating signaling cascades. In the adult hippocampal circuitry, CR and CB are expressed in specific principal neurons and subsets of interneurons. In addition, CR is transiently expressed within the neurogenic dentate gyrus (DG) niche. CR and CB expression during adult neurogenesis mark critical transition stages, onset of differentiation for CR, and the switch to adult-like connectivity for CB. Absence of either protein during these stages in null-mutant mice may have functional consequences and contribute to some aspects of the identified phenotypes. We report the impact of CR- and CB-deficiency on the proliferation and differentiation of progenitor cells within the subgranular zone (SGZ) neurogenic niche of the DG. Effects were evaluated (1) two and four weeks postnatally, during the transition period of the proliferative matrix to the adult state, and (2) in adult animals (3 months) to trace possible permanent changes in adult neurogenesis. The absence of CB from differentiated DG granule cells has no retrograde effect on the proliferative activity of progenitor cells, nor affects survival or migration/differentiation of newborn neurons in the adult DG including the SGZ. On the contrary, lack of CR from immature early postmitotic granule cells causes an early loss in proliferative capacity of the SGZ that is maintained into adult age, when it has a further impact on the migration/survival of newborn granule cells. The transient CR expression at the onset of adult neurogenesis differentiation may thus have two functions: (1) to serve as a self-maintenance signal for the pool of cells at the same stage of neurogenesis contributing to their survival/differentiation, and (2) it may contribute to retrograde signaling required for maintenance of the progenitor pool.
Resumo:
Background To perform a comprehensive study on the relationship between vitamin D metabolism and the response to interferon-α-based therapy of chronic hepatitis C. Methodology/Principal Findings Associations between a functionally relevant polymorphism in the gene encoding the vitamin D 1α-hydroxylase (CYP27B1-1260 rs10877012) and the response to treatment with pegylated interferon-α (PEG-IFN-α) and ribavirin were determined in 701 patients with chronic hepatitis C. In addition, associations between serum concentrations of 25-hydroxyvitamin D3 (25[OH]D3) and treatment outcome were analysed. CYP27B1-1260 rs10877012 was found to be an independent predictor of sustained virologic response (SVR) in patients with poor-response IL28B genotypes (15% difference in SVR for rs10877012 genotype AA vs. CC, p = 0.02, OR = 1.52, 95% CI = 1.061–2.188), but not in patients with favourable IL28B genotype. Patients with chronic hepatitis C showed a high prevalence of vitamin D insufficiency (25[OH]D3<20 ng/mL) during all seasons, but 25(OH)D3 serum levels were not associated with treatment outcome. Conclusions/Significance Our study suggests a role of bioactive vitamin D (1,25[OH]2D3, calcitriol) in the response to treatment of chronic hepatitis C. However, serum concentration of the calcitriol precursor 25(OH)D3 is not a suitable predictor of treatment outcome.
Resumo:
INTRODUCTION: Vitamin D is essential for calcium metabolism as well as for fracture prevention, and a recent review suggested that the optimal serum 25(OH)D lies in the region of 50-80 nmol L-1 (20-32 ng mL-1). A high prevalence of inadequacy has been reported in many studies but the prevalence of inadequacy amongst women with osteoporosis in different regions of the world has not been well characterized. SETTING AND SUBJECTS: A multinational study of 18 countries at various latitudes (range 64N-38S) was conducted in 2004 and 2005 to determine the average levels of serum 25(OH)D and the prevalence of vitamin D inadequacy. A total of 2606 postmenopausal women with osteoporosis (low bone mineral density, history of fragility fracture) seeking routine medical care were enrolled and serum 25(OH)D levels were measured at a single laboratory visit. RESULTS: Mean serum 25(OH)D level was 26.8 ng mL-1 (SE 0.3) and ranged from 7 to 243 ng mL-1. Regional mean values were highest in Latin America (29.6 ng mL-1, SE 0.6) and lowest in the Middle East (20.4 ng mL-1, SE 0.5). Overall, 64% of women had serum levels<30 ng mL-1. Serum parathyroid hormone reached a nadir at serum 25(OH)D levels>35 ng mL-1. In nonequatorial countries, women recruited during the winter months had somewhat lower serum 25(OH)D levels than those recruited during the summer months in some, but not all, countries. CONCLUSIONS: Low levels of serum 25(OH)D are common amongst women with osteoporosis. The results underscore the value of assuring vitamin D adequacy in these women.
Resumo:
As holoprosencephaly and Chiari II malformation differ considerably, both in pathogenesis and in phenotypic localization, the coincidence of both entities is extremely rare. The case presented is, to our knowledge, the first published report comprising a combination of a semilobar holoprosencephaly associated with a Chiari II malformation and a myelomeningocele diagnosed prenatally and confirmed by postmortem neuropathologic evaluation. These findings indicate that in the case of pre- and postnatal detection of a myelomeningocele and/or Chiari II malformation, possible additional intracranial malformation, such as a semilobar holoprosencephaly, should also be taken into account and vice versa.
Resumo:
Standard toxicity tests with high levels of D-tagatose showed a reversible enlargement of the liver in Sprague-Dawley rats without increase of liver enzymes. The present study tests the hypotheses that partial substitution of dietary sucrose by D-tagatose for 28 days increases the volume of human liver and the concentration of liver glycogen. Twelve healthy, male volunteers were studied in a double-blind crossover study with ingestion of D-tagatose (3x15 g daily) and placebo (sucrose, 3x15 g daily) for periods of 28 days each. Liver volume and glycogen concentration have been determined by magnetic resonance (MR) imaging and spectroscopy, which were accompanied by routine medical examinations. MR examinations before and after the treatments revealed no effects (P>0.05) of treatment, period, or subject for changes in liver volume or glycogen concentration. A steady increase of liver volumes, independent of the D-tagatose or placebo intake, has been observed over the study in parallel with a slight increase in body weight. The treatment with D-tagatose was not associated with clinically relevant changes of the examined clinico-chemical and hematological parameters, including liver enzymes and uric acid.