26 resultados para Macrophage Migration-Inhibitory Factors
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Macrophage Migration Inhibitory Factor (MIF) is a key mediator of inflammatory responses and innate immunity and has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. The oligomerization of MIF, more specifically trimer formation, is essential for its keto-enol tautomerase activity and probably mediates several of its interactions and biological activities, including its binding to its receptor CD74 and activation of certain signaling pathways. Therefore, understanding the molecular factors governing the oligomerization of MIF and the role of quaternary structure in modulating its structural stability and multifunctional properties is crucial for understanding the function of MIF in health and disease. Herein, we describe highly conserved intersubunit interactions involving the hydrophobic packing of the side chain of Leu46 onto the β-strand β3 of one monomer within a hydrophobic pocket from the adjacent monomer constituted by residues Arg11, Val14, Phe18, Leu19, Val39, His40, Val41, Val42, and Pro43. To elucidate the structural significance of these intersubunit interactions and their relative contribution to MIF’s trimerization, structural stability and catalytic activity, we generated three point mutations where Leu46 was replaced by glycine (L46G), alanine (L46A) and phenylalanine (L46F), and their structural properties, stability, oligomerization state, and catalytic activity were characterized using a battery of biophysical methods and X-ray crystallography. Our findings provide new insights into the role of the Leu46 hydrophobic pocket in stabilizing the conformational state of MIF in solution. Disrupting the Leu46 hydrophobic interaction perturbs the secondary and tertiary structure of the protein but has no effect on its oligomerization state.
Resumo:
Macrophage migration inhibitory factor (MIF) is an important cytokine involved in the regulation of innate immunity and present at increased levels during inflammatory responses. Here we demonstrate that mature blood and tissue neutrophils constitutively express MIF as a cytosolic protein not associated with azurophil granules. Functionally active MIF, but not proteases stored in azurophil granules, was released from apoptotic neutrophils following short term tumor necrosis factor (TNF)-alpha stimulation in a caspase-dependent manner and prior to any detectable phagocytosis by monocyte-derived macrophages. Moreover, TNF-alpha-mediated MIF release was blocked by glyburide and propenicide, both inhibitors of ATP-binding cassette-type transporters, suggesting that this transporter system is activated during neutrophil apoptosis. Taken together, apoptotic mature neutrophils release MIF upon short term TNF-alpha stimulation. Therefore, apoptosis may not always occur without the induction of pro-inflammatory mechanisms.
Resumo:
BACKGROUND: Macrophage migration inhibitory factor (MIF) plays an important regulatory role in sepsis. In the promoter region a C/G single nucleotide polymorphism (SNP) at position -173 (rs755622) and a CATT5-8 microsatellite at position -794 are related to modified promoter activity. The purpose of the study was to analyze their association with the incidence and outcome of severe sepsis. METHODS: Genotype distributions and allele frequencies in 169 patients with severe sepsis, 94 healthy blood donors and 183 postoperative patients without signs of infection or inflammation were analyzed by real time PCR and Sequence analysis. All included individuals were Caucasians. RESULTS: Genotype distribution and allele frequencies of severe sepsis patients were comparable to both control groups. However, the genotype and allele frequencies of both polymorphisms were associated significantly with the outcome of severe sepsis. The highest risk of dying from severe sepsis was detectable in patients carrying a haplotype with the alleles -173 C and CATT7 (p = 0.0005, fisher exact test, RR = 1,806, CI: 1.337 to 2.439). CONCLUSION: The haplotype with the combination of the -173 C allele and the -794 CATT7 allele may not serve as a marker for susceptibility to sepsis, but may help identify septic patients at risk of dying.
Resumo:
BACKGROUND: Febrile neutropenia (FN) and other infectious complications are some of the most serious treatment-related toxicities of chemotherapy for cancer, with a mortality rate of 2% to 21%. The two main types of prophylactic regimens are granulocyte (G-CSF) or granulocyte-macrophage colony stimulating factors (GM-CSF); and antibiotics, frequently quinolones or cotrimoxazole. Important current guidelines recommend the use of colony stimulating factors when the risk of febrile neutropenia is above 20% but they do not mention the use of antibiotics. However, both regimens have been shown to reduce the incidence of infections. Since no systematic review has compared the two regimens, a systematic review was undertaken. OBJECTIVES: To compare the effectiveness of G-CSF or GM-CSF with antibiotics in cancer patients receiving myeloablative chemotherapy with respect to preventing fever, febrile neutropenia, infection, infection-related mortality, early mortality and improving quality of life. SEARCH STRATEGY: We searched The Cochrane Library, MEDLINE, EMBASE, databases of ongoing trials, and conference proceedings of the American Society of Clinical Oncology and the American Society of Hematology (1980 to 2007). We planned to include both full-text and abstract publications. SELECTION CRITERIA: Randomised controlled trials comparing prophylaxis with G-CSF or GM-CSF versus antibiotics in cancer patients of all ages receiving chemotherapy or bone marrow or stem cell transplantation were included for review. Both study arms had to receive identical chemotherapy regimes and other supportive care. DATA COLLECTION AND ANALYSIS: Trial eligibility and quality assessment, data extraction and analysis were done in duplicate. Authors were contacted to obtain missing data. MAIN RESULTS: We included two eligible randomised controlled trials with 195 patients. Due to differences in the outcomes reported, the trials could not be pooled for meta-analysis. Both trials showed non-significant results favouring antibiotics for the prevention of fever or hospitalisation for febrile neutropenia. AUTHORS' CONCLUSIONS: There is no evidence for or against antibiotics compared to G(M)-CSFs for the prevention of infections in cancer patients.
Resumo:
BACKGROUND Febrile neutropenia (FN) and other infectious complications are some of the most serious treatment-related toxicities of chemotherapy for cancer, with a mortality rate of 2% to 21%. The two main types of prophylactic regimens are granulocyte (macrophage) colony-stimulating factors (G(M)-CSF) and antibiotics, frequently quinolones or cotrimoxazole. Current guidelines recommend the use of colony-stimulating factors when the risk of febrile neutropenia is above 20%, but they do not mention the use of antibiotics. However, both regimens have been shown to reduce the incidence of infections. Since no systematic review has compared the two regimens, a systematic review was undertaken. OBJECTIVES To compare the efficacy and safety of G(M)-CSF compared to antibiotics in cancer patients receiving myelotoxic chemotherapy. SEARCH METHODS We searched The Cochrane Library, MEDLINE, EMBASE, databases of ongoing trials, and conference proceedings of the American Society of Clinical Oncology and the American Society of Hematology (1980 to December 2015). We planned to include both full-text and abstract publications. Two review authors independently screened search results. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing prophylaxis with G(M)-CSF versus antibiotics for the prevention of infection in cancer patients of all ages receiving chemotherapy. All study arms had to receive identical chemotherapy regimes and other supportive care. We included full-text, abstracts, and unpublished data if sufficient information on study design, participant characteristics, interventions and outcomes was available. We excluded cross-over trials, quasi-randomised trials and post-hoc retrospective trials. DATA COLLECTION AND ANALYSIS Two review authors independently screened the results of the search strategies, extracted data, assessed risk of bias, and analysed data according to standard Cochrane methods. We did final interpretation together with an experienced clinician. MAIN RESULTS In this updated review, we included no new randomised controlled trials. We included two trials in the review, one with 40 breast cancer patients receiving high-dose chemotherapy and G-CSF compared to antibiotics, a second one evaluating 155 patients with small-cell lung cancer receiving GM-CSF or antibiotics.We judge the overall risk of bias as high in the G-CSF trial, as neither patients nor physicians were blinded and not all included patients were analysed as randomised (7 out of 40 patients). We considered the overall risk of bias in the GM-CSF to be moderate, because of the risk of performance bias (neither patients nor personnel were blinded), but low risk of selection and attrition bias.For the trial comparing G-CSF to antibiotics, all cause mortality was not reported. There was no evidence of a difference for infection-related mortality, with zero events in each arm. Microbiologically or clinically documented infections, severe infections, quality of life, and adverse events were not reported. There was no evidence of a difference in frequency of febrile neutropenia (risk ratio (RR) 1.22; 95% confidence interval (CI) 0.53 to 2.84). The quality of the evidence for the two reported outcomes, infection-related mortality and frequency of febrile neutropenia, was very low, due to the low number of patients evaluated (high imprecision) and the high risk of bias.There was no evidence of a difference in terms of median survival time in the trial comparing GM-CSF and antibiotics. Two-year survival times were 6% (0 to 12%) in both arms (high imprecision, low quality of evidence). There were four toxic deaths in the GM-CSF arm and three in the antibiotics arm (3.8%), without evidence of a difference (RR 1.32; 95% CI 0.30 to 5.69; P = 0.71; low quality of evidence). There were 28% grade III or IV infections in the GM-CSF arm and 18% in the antibiotics arm, without any evidence of a difference (RR 1.55; 95% CI 0.86 to 2.80; P = 0.15, low quality of evidence). There were 5 episodes out of 360 cycles of grade IV infections in the GM-CSF arm and 3 episodes out of 334 cycles in the cotrimoxazole arm (0.8%), with no evidence of a difference (RR 1.55; 95% CI 0.37 to 6.42; P = 0.55; low quality of evidence). There was no significant difference between the two arms for non-haematological toxicities like diarrhoea, stomatitis, infections, neurologic, respiratory, or cardiac adverse events. Grade III and IV thrombopenia occurred significantly more frequently in the GM-CSF arm (60.8%) compared to the antibiotics arm (28.9%); (RR 2.10; 95% CI 1.41 to 3.12; P = 0.0002; low quality of evidence). Neither infection-related mortality, incidence of febrile neutropenia, nor quality of life were reported in this trial. AUTHORS' CONCLUSIONS As we only found two small trials with 195 patients altogether, no conclusion for clinical practice is possible. More trials are necessary to assess the benefits and harms of G(M)-CSF compared to antibiotics for infection prevention in cancer patients receiving chemotherapy.
Resumo:
Cell competition is a process by which the slow dividing cells (losers) are recognized and eliminated from growing tissues. Loser cells are extruded from the epithelium and engulfed by the haemocytes, the Drosophila macrophages. However, how macrophages identify the dying loser cells is unclear. Here we show that apoptotic loser cells secrete Tyrosyl-tRNA synthetase (TyrRS), which is best known as a core component of the translational machinery. Secreted TyrRS is cleaved by matrix metalloproteinases generating MiniTyr and EMAP fragments. EMAP acts as a guiding cue for macrophage migration in the Drosophila larvae, as it attracts the haemocytes to the apoptotic loser cells. JNK signalling and Kish, a component of the secretory pathway, are autonomously required for the active secretion of TyrRS by the loser cells. Altogether, this mechanism guarantees effective removal of unfit cells from the growing tissue.
Resumo:
The effect of vitamin E on proliferation, integrin expression, adhesion, and migration in human glioma cells has been studied. gamma-tocopherol at 50 microM concentration exerted more inhibitory effect than alpha-tocopherol at the same concentration on glioma cell proliferation. Integrin alpha5 and beta1 protein levels were increased upon both alpha- and gamma-tocopherol treatments. In parallel, an increase in the alpha5beta1 heterodimer cell surface expression was observed. The tocopherols inhibited glioma cell-binding to fibronectin where gamma-tocopherol treatment induced glioma cell migration. Taken together, the data reported here are consistent with the notion that the inhibition of glioma cell proliferation induced by tocopherols may be mediated, at least in part, by an increase in integrin alpha5 and beta1 expression. Cell adhesion is also negatively affected by tocopherols, despite a small increase in the surface appearance of the alpha5beta1 heterodimer. Cell migration is stimulated by gamma-tocopherol. It is concluded that alpha5 and beta1 integrin expression and surface appearance are not sufficient to explain all the observations and that other integrins or in general other factors may be associated with these events.
Resumo:
When briefly presented with pairs of words, skilled readers can sometimes report words with migrated letters (e.g., they report hunt when presented with the words hint and hurt). These letter migration phenomena have been often used to investigate factors that influence reading such as letter position coding. However, the neural basis of letter migration is poorly understood. Previous evidence has implicated the right posterior parietal cortex (PPC) in processing visuospatial attributes and lexical properties during word reading. The aim of this study was to assess this putative role by combining an inhibitory TMS protocol with a letter migration paradigm, which was designed to examine the contributions of visuospatial attributes and lexical factors. Temporary interference with the right PPC led to three specific effects on letter migration. First, the number of letter migrations was significantly increased only in the group with active stimulation (vs. a sham stimulation group or a control group without stimulation), and there was no significant effect on other error types. Second, this effect occurred only when letter migration could result in a meaningful word (migration vs. control context). Third, the effect of active stimulation on the number of letter migrations was lateralized to target words presented on the left. Our study thus demonstrates that the right PPC plays a specific and causal role in the phenomenon of letter migration. The nature of this role cannot be explained solely in terms of visuospatial attention, rather it involves an interplay between visuospatial attentional and word reading-specific factors.
Resumo:
BACKGROUND Platelet-rich concentrates are used as a source of growth factors to improve the healing process. The diverse preparation protocols and the gaps in knowledge of their biological properties complicate the interpretation of clinical results. QUESTIONS/PURPOSES In this study we aimed to (1) analyze the concentration and kinetics of growth factors released from leukocyte- and platelet-rich fibrin (L-PRF), leukocyte- and platelet-rich plasma (L-PRP), and natural blood clot during in vitro culture; (2) investigate the migration of mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) as a functional response to the factors released; and (3) uncover correlations between individual growth factors with the initial platelet/leukocyte counts or the induced cell migration. METHODS L-PRF, L-PRP, and natural blood clot prepared from 11 donors were cultured in vitro for 28 days and media supernatants collected after 8 hours and 1, 3, 7, 14, and 28 days. Released transforming growth factor β1 (TGF-β1), vascular endothelial growth factor (VEGF), insulin growth factor (IGF-1), platelet-derived growth factor AB (PDGF-AB), and interleukin-1β (IL-1β) were measured in the supernatants with enzyme-linked immunosorbent assay. Migration of MSC and HUVEC induced by the supernatants was evaluated in Boyden chambers. RESULTS More TGF-ß1 was released (mean ± SD in pg/mL of blood) from L-PRF (37,796 ± 5492) compared with L-PRP (23,738 ± 6848; p < 0.001) and blood clot (3739 ± 4690; p < 0.001), whereas more VEGF and IL-1ß were released from blood clot (1933 ± 704 and 2053 ± 908, respectively) compared with both L-PRP (642 ± 208; p < 0.001 and 273 ± 386; p < 0.001, respectively) and L-PRF (852 ± 376; p < 0.001 and 65 ± 56, p < 0.001, respectively). No differences were observed in IGF-1 and PDGF-AB released from any of the concentrates. TGF-β1 release peaked at Day 7 in L-PRF and at 8 hours and Day 7 in L-PRP and 8 hours and Day 14 in blood clot. In all concentrates, main release of VEGF occurred between 3 and 7 days and of IL-1β between Days 1 and 7. IGF-1 and PDGF-AB were released until Day 1 in L-PRP and blood clot, in contrast to sustained release over the first 3 days in L-PRF. The strongest migration of MSC occurred in response to L-PRF, and more HUVEC migration was seen in L-PRF and blood clot compared with L-PRP. TGF-β1 correlated with initial platelet counts in L-PRF (Pearson r = 0.66, p = 0.0273) and initial leukocyte counts in L-PRP (Pearson r = 0.83, p = 0.0016). A positive correlation of IL-1β on migration of MSC and HUVEC was revealed (Pearson r = 0.16, p = 0.0208; Pearson r = 0.31, p < 0.001). CONCLUSIONS In comparison to L-PRP, L-PRF had higher amounts of released TGF-β1, a long-term release of growth factors, and stronger induction of cell migration. Future preclinical studies should confirm these data in a defined injury model. CLINICAL RELEVANCE By characterizing the biologic properties of different platelet concentrates in vitro, we may gain a better understanding of their clinical effects and develop guidelines for specific future applications.
Resumo:
Compared to Europe's mean immigrant contingent of 7.3 to 8.6 % Switzerland holds the highest contingent of foreign population with 23.5 %. Therefore it is of utmost importance that physicians have a knowledge of the specific characteristics of immigrant patients. The influence of personality factors (experience, behavior) is not independent from the influence of culturally-related environmental factors (regional differences in diet, pollutants, meanings, etc.). In addition, different cultural groups rate their quality of life differently. Psychological reasons for recurrent abdominal pain are stress (life events), effects of self-medication (laxatives, cocaine) and sexual abuse but also rare infectious diseases are more common among immigrants (e.g. tuberculosis, histoplasmosis, etc.). Migration-specific characteristics are mainly to find in the semiotics of the symptoms: not every abdominal pain is real pain in the abdomen. Finally, it is crucial to make the distinction between organic, functional and psychological-related pain. This can, however, usually only be accomplished in the context of the entire situation of a patient and, depending on the situation, with the support of a colleague from the appropriate cultural group or an experienced interpreter. In this review we limit ourselves to the presentation of the working population of the migrants, because these represent the largest group of all migrants. The specific situation of asylum seekers will also be refrained to where appropriate.
Resumo:
Transforming growth factor-β (TGFβ) plays an important role in breast cancer metastasis. Here phosphoinositide 3-kinase (PI3K) signalling was found to play an essential role in the enhanced migration capability of fibroblastoid cells (FibRas) derived from normal mammary epithelial cells (EpH4) by transduction of oncogenic Ras (EpRas) and TGFβ1. While expression of the PI3K isoform p110δ was down-regulated in FibRas cells, there was an increase in the expression of p110α and p110β in the fibroblastoid cells. The PI3K isoform p110β was found to specifically contribute to cell migration in FibRas cells, while p110α contributed to the response in EpH4, EpRas and FibRas cells. Akt, a downstream targets of PI3K signalling, had an inhibitory role in the migration of transformed breast cancer cells, while Rac, Cdc42 and the ribosomal protein S6 kinase (S6K) were necessary for the response. Together our data reveal a novel specific function of the PI3K isoform p110β in the migration of cells transformed by oncogenic H-Ras and TGF-β1.
Resumo:
Antimicrobial resistance is an emerging concern to public health, and food-producing animals are known to be a potential source for transmission of resistant bacteria to humans. As legislation of the European Union requires to ban conventional cages for the housing of laying hens on the one hand, and a high food safety standard for eggs on the other hand, further investigations about the occurrence of antimicrobial resistance in alternative housing types are required. In this study, we determined antimicrobial resistance in indicator bacteria from 396 cloacal swabs from 99 Swiss laying hen farms among four alternative housing types during a cross-sectional study. On each farm, four hens were sampled and exposure to potential risk factors was identified with a questionnaire. The minimal inhibitory concentration was determined using broth microdilution in Escherichia coli (n=371) for 18 antimicrobials and in Enterococcus faecalis (n=138) and Enterococcus faecium (n=153) for 16 antimicrobials. All antimicrobial classes recommended by the European Food Safety Authority for E. coli and enterococci were included in the resistance profile. Sixty per cent of the E. coli isolates were susceptible to all of the considered antimicrobials and 30% were resistant to at least two antimicrobials. In E. faecalis, 33% of the strains were susceptible to all tested antimicrobials and 40% were resistant to two or more antimicrobials, whereas in E. faecium these figures were 14% and 39% respectively. Risk factor analyses were carried out for bacteria species and antimicrobials with a prevalence of resistance between 15% and 85%. In these analyses, none of the considered housing and management factors showed a consistent association with the prevalence of resistance for more than two combinations of bacteria and antimicrobial. Therefore we conclude that the impact of the considered housing and management practices on the egg producing farms on resistance in laying hens is low.
Resumo:
High-dose or dose-intensive cytotoxic chemotherapy often causes myelosuppression and severe neutropenia among cancer patients. Severe neutropenia accompanied by fever, named febrile neutropenia (FN), is the most serious manifestation of neutropenia usually requiring hospitalization and intravenous antibiotics. FN and neutropenia can lead to chemotherapy treatment delays or dose reductions, which potentially compromises the effectiveness of cancer treatment and prospects for a cure. Granulocyte-macrophage (GM) and granulocyte colony-stimulating factors (G-CSFs) are administered during chemotherapy in order to prevent or reduce the incidence or the duration of FN and neutropenia.
Resumo:
The effect of somatic cell count (SCC) and milk fraction on milk composition, distribution of cell populations, and mRNA expression of various inflammatory parameters was studied. Therefore, quarter milk samples were defined as cisternal (C), first 400 g of alveolar (A1), and remaining alveolar milk (A2) during the course of milking. Quarters were assigned to 4 groups according to their total SCC: 1) <12 x 10(3)/mL, 2) 12 to 100 x 10(3)/mL, 3) 100 to 350 x 10(3)/mL, and 4) >350 x 10(3)/mL. Milk constituents of interest were SCC, fat, protein, lactose sodium, and chloride ions as well as electrical conductivity. Cell populations were classified into lymphocytes, macrophages, and neutrophils (PMN). The mRNA expression of the inflammatory factors tumor necrosis factor-alpha, interleukin-1beta, cyclooxygenase-2, lactoferrin, and lysozyme was measured via real-time, quantitative reverse transcription PCR. Somatic cell count decreased from highest levels in C to lowest levels in A1 and increased thereafter to A2 in all groups. Fat content increased from C to A2 and with increasing SCC level. Lactose decreased with increasing SCC level but remained unchanged during milking. Concentrations of sodium and chloride, and electrical conductivity increased with increasing SCC but were higher in C than in A1 and A2. Protein was not affected by milk fraction or SCC level. The distribution of leukocytes was dramatically influenced by milk fraction and SCC. Lymphocytes were the dominating cell population in group 1, but the proportion of lymphocytes was low in groups 2, 3, and 4. Macrophage proportion was highest in group 2 and decreased in groups 3 and 4, whereas that of PMN increased from group 2 to 4. The content of macrophages decreased during milking in all SCC groups whereas that of PMN increased. The proportion of lymphocytes was not affected by milk fraction. The mRNA expression of all inflammatory factors showed an increase with increasing SCC but minor changes occurred during milking. In conclusion, milk fraction and SCC level have a crucial influence on the distribution of leukocyte populations and several milk constituents. The surprisingly high content of lymphocytes and concomitantly low mRNA expression of inflammatory factors in quarters with SCC <12 x 10(3)/mL indicates a different and possibly reduced readiness of the immune system to respond to invading pathogens.