19 resultados para Machinery, Kinematics of.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction . Compared to most equine horse breeds which are able to walk, trot and canter /gallop, the gait repertoire of the Icelandic horses additionally includes the lateral gait tölt and frequently also the pace. With respect to the tölt gait, special shoeing, saddling and riding techniques have been developed for Icelandic horses in order to enhance its expressiveness and regularity. Toes are left unnaturally long and heavy shoes and paddings, as well as weighted boots are used to enforce the individual gait predisposition. For the same reason, the rider is placed more caudally to the horse's centre of mass as compared to other riding techniques. The biomechanical impact of these methods on the health of the locomotor system has so far never been subject of systematic research. Objectives . The aims of the presented study are (1) to describe the kinetic and kinematic characteristics of the tölt performed on a treadmill, (2) to understand the mechanical consequences of shoeing manipulation (long hooves, weighted boots) on the loading and protraction movement of the limbs, as well as (3) to study the pressure distribution and effects on the gait pattern of 3 different saddle types used for riding Icelandic horses. Materials and methods . Gait analysis was carried out in 13 Icelandic horses at walk and at slow and medium tölting and trotting speeds on a high-speed treadmill instrumented for measuring vertical ground reaction forces as well as temporal and spatial gait variables. Kinematic data of horse, rider and saddle were measured simultaneously. Gait analysis was first carried out with high, long hooves (SH) without and in combination with weighted boots (ad aim (2)). Afterwards, horses were re-shod according to current horseshoeing standards (SN) and gait analysis was repeated (ad aims (1) and (2)). In a second trial, horses were additionally equipped with a pressure sensitive saddle mat and were ridden with a dressage-like saddle (SDres), an Icelandic saddle (Slcel) and a saddle cushion (SCush) in the standard saddle position (ad aim 3). Results and conclusions . Compared to trot at the same speed, tölting horses had a higher stride rate and lower stride impulses. At the tölt loading of the forelimbs was increased in form of higher peak vertical forces (Fzpeak) due to shorter relative stance durations (StDrel). Conversely, in the hindlimbs, longer StDrel resulted in lower Fzpeak. Despite the higher head-neck position at tölt, there was no measurable shift in weight to the hindlimbs. Footfall rhythm was in most horses laterally coupled at the tölt and frequently had a slight fourbeat and a very short suspension phase at trot; underlining the fact that performance of correct gaits in Icelandic horses needs special training. Gait performance as it is currently judged in competition could be improved using a shoeing with SH, resulting in a 21 ± 5 mm longer dorsal hoof wall, but also a weight gain of 273 ± 50 g at the distal limb due to heavier shoeing material. Compared to SN, SH led to a lower stride rate, a longer stride length and a higher, but not wider, forelimb protraction arc, which were also positively associated with speed. At the tölt, the footfall rhythm showed less tendency to lateral couplets and at the trot, the suspension phase was longer. However, on the long term, SH may have negative implications for the health of the palmar structures of the distal foot by increased limb impulses, higher torques at breakover (up to 20%); as well as peak vertical forces at faster speeds. Compared to the shoeing style, the saddle type had less influence on limb forces or movements. The slight weight shift to the rear with SCush and Slcel may be explained by the more caudal position of the rider relative to the horse's back. With SCush, pressure was highest under the cranial part of the saddle, whereas the saddles with trees had more pressure under the caudal area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Dent Blanche Tectonic System (DBTS) is a composite thrust sheet derived from the previously thinned passive Adriatic continental margin. A kilometric high-strain zone, the Roisan-Cignana Shear Zone (RCSZ) defines the major tectonic boundary within the DBTS and separates it into two subunits, the Dent Blanche s.s. nappe to the northwest and the Mont Mary nappe to the southeast. Within this shear zone, tectonic slices of Mesozoic and pre-Alpine meta-sediments became amalgamated with continental basement rocks of the Adriatic margin. The occurrence of high pressure assemblages along the contact between these tectonic slices indicates that the amalgamation occurred prior to or during the subduction process, at an early stage of the Alpine orogenic cycle. Detailed mapping, petrographic and structural analysis show that the Roisan-Cignana Shear Zone results from several superimposed Alpine structural and metamorphic stages. Subduction of the continental fragments is recorded by blueschist-facies deformation, whereas the Alpine collision is reflected by a greenschist facies overprint associated with the development of large-scale open folds. The postnappe evolution comprises the development of low-angle brittle faults, followed by large-scale folding (Vanzone phase) and finally brittle extensional faults. The RCSZ shows that fragments of continental crust had been torn off the passive continental margin prior to continental collision, thus recording the entire history of the orogenic cycle. The role of preceding Permo-Triassic lithospheric thinning, Jurassic rifting, and ablative subduction processes in controlling the removal of crustal fragments from the reactivated passive continental margin is discussed. Results of this study constrain the temporal sequence of the tectono-metamorphic processes involved in the assembly of the DBTS, but they also show limits on the interpretation. In particular it remains difficult to judge to what extent precollisional rifting at the Adriatic continental margin preconditioned the efficiency of convergent processes, i.e. accretion, subduction, and orogenic exhumation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: The authors have shown that rats can be retrained to swim after a moderately severe thoracic spinal cord contusion. They also found that improvements in body position and hindlimb activity occurred rapidly over the first 2 weeks of training, reaching a plateau by week 4. Overground walking was not influenced by swim training, suggesting that swimming may be a task-specific model of locomotor retraining. OBJECTIVE: To provide a quantitative description of hindlimb movements of uninjured adult rats during swimming, and then after injury and retraining. METHODS: The authors used a novel and streamlined kinematic assessment of swimming in which each limb is described in 2 dimensions, as 3 segments and 2 angles. RESULTS: The kinematics of uninjured rats do not change over 4 weeks of daily swimming, suggesting that acclimatization does not involve refinements in hindlimb movement. After spinal cord injury, retraining involved increases in hindlimb excursion and improved limb position, but the velocity of the movements remained slow. CONCLUSION: These data suggest that the activity pattern of swimming is hardwired in the rat spinal cord. After spinal cord injury, repetition is sufficient to bring about significant improvements in the pattern of hindlimb movement but does not improve the forces generated, leaving the animals with persistent deficits. These data support the concept that force (load) and pattern generation (recruitment) are independent and may have to be managed together with respect to postinjury rehabilitation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The morbillivirus cell entry machinery consists of a fusion (F) protein trimer that refolds to mediate membrane fusion following receptor-induced conformational changes in its binding partner, the tetrameric attachment (H) protein. To identify molecular determinants that control F refolding, we generated F chimeras between measles virus (MeV) and canine distemper virus (CDV). We located a central pocket in the globular head domain of CDV F that regulates the stability of the metastable, prefusion conformational state of the F trimer. Most mutations introduced into this "pocket'" appeared to mediate a destabilizing effect, a phenotype associated with enhanced membrane fusion activity. Strikingly, under specific triggering conditions (i.e., variation of receptor type and H protein origin), some F mutants also exhibited resistance to a potent morbillivirus entry inhibitor, which is known to block F triggering by enhancing the stability of prefusion F trimers. Our data reveal that the molecular nature of the F stimulus and the intrinsic stability of metastable prefusion F both regulate the efficiency of F refolding and escape from small-molecule refolding blockers. IMPORTANCE: With the aim to better characterize the thermodynamic basis of morbillivirus membrane fusion for cell entry and spread, we report here that the activation energy barrier of prefusion F trimers together with the molecular nature of the triggering "stimulus" (attachment protein and receptor types) define a "triggering range," which governs the initiation of the membrane fusion process. A central "pocket" microdomain in the globular F head contributes substantially to the regulation of the conformational stability of the prefusion complexes. The triggering range also defines the mechanism of viral escape from entry inhibitors and describes how the cellular environment can affect membrane fusion efficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

INTRODUCTION AND HYPOTHESIS The prevalence of female stress urinary incontinence is high, and young adults are also affected, including athletes, especially those involved in "high-impact" sports. To date there have been almost no studies testing pelvic floor muscle (PFM) activity during dynamic functional whole body movements. The aim of this study was the description and reliability test of PFM activity and time variables during running. METHODS A prospective cross-sectional study including ten healthy female subjects was designed with the focus on the intra-session test-retest reliability of PFM activity and time variables during running derived from electromyography (EMG) and accelerometry. RESULTS Thirteen variables were identified based on ten steps of each subject: Six EMG variables showed good reliability (ICC 0.906-0.942) and seven time variables did not show good reliability (ICC 0.113-0.731). Time variables (e.g. time difference between heel strike and maximal acceleration of vaginal accelerator) showed low reliability. However, relevant PFM EMG variables during running (e.g., pre-activation, minimal and maximal activity) could be identified and showed good reliability. CONCLUSION Further adaptations regarding measurement methods should be tested to gain better control of the kinetics and kinematics of the EMG probe and accelerometers. To our knowledge this is the first study to test the reliability of PFM activity and time variables during dynamic functional whole body movements. More knowledge of PFM activity and time variables may help to provide a deeper insight into physical strain with high force impacts and important functional reflexive contraction patterns of PFM to maintain or to restore continence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanism of viral persistence, the driving force behind the chronic progression of inflammatory demyelination in canine distemper virus (CDV) infection, is associated with non-cytolytic viral cell-to-cell spread. Here, we studied the molecular mechanisms of viral spread of a recombinant fluorescent protein-expressing virulent CDV in primary canine astrocyte cultures. Time-lapse video microscopy documented that CDV spread was very efficient using cell processes contacting remote target cells. Strikingly, CDV transmission to remote cells could occur in less than 6 h, suggesting that a complete viral cycle with production of extracellular free particles was not essential in enabling CDV to spread in glial cells. Titration experiments and electron microscopy confirmed a very low CDV particle production despite higher titers of membrane-associated viruses. Interestingly, confocal laser microscopy and lentivirus transduction indicated expression and functionality of the viral fusion machinery, consisting of the viral fusion (F) and attachment (H) glycoproteins, at the cell surface. Importantly, using a single-cycle infectious recombinant H-knockout, H-complemented virus, we demonstrated that H, and thus potentially the viral fusion complex, was necessary to enable CDV spread. Furthermore, since we could not detect CD150/SLAM expression in brain cells, the presence of a yet non-identified glial receptor for CDV was suggested. Altogether, our findings indicate that persistence in CDV infection results from intracellular cell-to-cell transmission requiring the CDV-H protein. Viral transfer, happening selectively at the tip of astrocytic processes, may help the virus to cover long distances in the astroglial network, "outrunning" the host's immune response in demyelinating plaques, thus continuously eliciting new lesions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paramyxovirus entry machinery consists of two glycoproteins that tightly cooperate to achieve membrane fusion for cell entry: the tetrameric attachment protein (HN, H, or G, depending on the paramyxovirus genus) and the trimeric fusion protein (F). Here, we explore whether receptor-induced conformational changes within morbillivirus H proteins promote membrane fusion by a mechanism requiring the active destabilization of prefusion F or by the dissociation of prefusion F from intracellularly preformed glycoprotein complexes. To properly probe F conformations, we identified anti-F monoclonal antibodies (MAbs) that recognize conformation-dependent epitopes. Through heat treatment as a surrogate for H-mediated F triggering, we demonstrate with these MAbs that the morbillivirus F trimer contains a sufficiently high inherent activation energy barrier to maintain the metastable prefusion state even in the absence of H. This notion was further validated by exploring the conformational states of destabilized F mutants and stabilized soluble F variants combined with the use of a membrane fusion inhibitor (3g). Taken together, our findings reveal that the morbillivirus H protein must lower the activation energy barrier of metastable prefusion F for fusion triggering.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Trypanosoma brucei and related pathogens transcribe most genes as polycistronic arrays that are subsequently processed into monocistronic mRNAs. Expression is frequently regulated post-transcriptionally by cis-acting elements in the untranslated regions (UTRs). GPEET and EP procyclins are the major surface proteins of procyclic (insect midgut) forms of T. brucei. Three regulatory elements common to the 3' UTRs of both mRNAs regulate mRNA turnover and translation. The glycerol-responsive element (GRE) is unique to the GPEET 3' UTR and regulates its expression independently from EP. A synthetic RNA encompassing the GRE showed robust sequence-specific interactions with cytoplasmic proteins in electromobility shift assays. This, combined with column chromatography, led to the identification of 3 Alba-domain proteins. RNAi against Alba3 caused a growth phenotype and reduced the levels of Alba1 and Alba2 proteins, indicative of interactions between family members. Tandem-affinity purification and co-immunoprecipitation verified these interactions and also identified Alba4 in sub-stoichiometric amounts. Alba proteins are cytoplasmic and are recruited to starvation granules together with poly(A) RNA. Concomitant depletion of all four Alba proteins by RNAi specifically reduced translation of a reporter transcript flanked by the GPEET 3' UTR. Pulldown of tagged Alba proteins confirmed interactions with poly(A) binding proteins, ribosomal protein P0 and, in the case of Alba3, the cap-binding protein eIF4E4. In addition, Alba2 and Alba3 partially cosediment with polyribosomes in sucrose gradients. Alba-domain proteins seem to have exhibited great functional plasticity in the course of evolution. First identified as DNA-binding proteins in Archaea, then in association with nuclear RNase MRP/P in yeast and mammalian cells, they were recently described as components of a translationally silent complex containing stage-regulated mRNAs in Plasmodium. Our results are also consistent with stage-specific regulation of translation in trypanosomes, but most likely in the context of initiation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sound perception requires functional hair cell mechanotransduction (MET) machinery, including the MET channels and tip-link proteins. Prior work showed that uptake of ototoxic aminoglycosides (AG) into hair cells requires functional MET channels. In this study, we examined whether tip-link proteins, including Cadherin 23 (Cdh23), regulate AG entry into hair cells. Using time-lapse microscopy on cochlear explants, we found rapid uptake of gentamicin-conjugated Texas Red (GTTR) into hair cells from three-day-old Cdh23(+/+) and Cdh23(v2J/+) mice, but failed to detect GTTR uptake in Cdh23(v2J/v2J) hair cells. Pre-treatment of wildtype cochleae with the calcium chelator 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA) to disrupt tip-links also effectively reduced GTTR uptake into hair cells. Both Cdh23(v2J/v2J) and BAPTA-treated hair cells were protected from degeneration caused by gentamicin. Six hours after BAPTA treatment, GTTR uptake remained reduced in comparison to controls; by 24 hours, drug uptake was comparable between untreated and BAPTA-treated hair cells, which again became susceptible to cell death induced by gentamicin. Together, these results provide genetic and pharmacologic evidence that tip-links are required for AG uptake and toxicity in hair cells. Because tip-links can spontaneously regenerate, their temporary breakage offers a limited time window when hair cells are protected from AG toxicity.