42 resultados para Machine translating.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Delineating brain tumor boundaries from magnetic resonance images is an essential task for the analysis of brain cancer. We propose a fully automatic method for brain tissue segmentation, which combines Support Vector Machine classification using multispectral intensities and textures with subsequent hierarchical regularization based on Conditional Random Fields. The CRF regularization introduces spatial constraints to the powerful SVM classification, which assumes voxels to be independent from their neighbors. The approach first separates healthy and tumor tissue before both regions are subclassified into cerebrospinal fluid, white matter, gray matter and necrotic, active, edema region respectively in a novel hierarchical way. The hierarchical approach adds robustness and speed by allowing to apply different levels of regularization at different stages. The method is fast and tailored to standard clinical acquisition protocols. It was assessed on 10 multispectral patient datasets with results outperforming previous methods in terms of segmentation detail and computation times.
Resumo:
Advances in food transformation have dramatically increased the diversity of products on the market and, consequently, exposed consumers to a complex spectrum of bioactive nutrients whose potential risks and benefits have mostly not been confidently demonstrated. Therefore, tools are needed to efficiently screen products for selected physiological properties before they enter the market. NutriChip is an interdisciplinary modular project funded by the Swiss programme Nano-Tera, which groups scientists from several areas of research with the aim of developing analytical strategies that will enable functional screening of foods. The project focuses on postprandial inflammatory stress, which potentially contributes to the development of chronic inflammatory diseases. The first module of the NutriChip project is composed of three in vitro biochemical steps that mimic the digestion process, intestinal absorption, and subsequent modulation of immune cells by the bioavailable nutrients. The second module is a miniaturised form of the first module (gut-on-a-chip) that integrates a microfluidic-based cell co-culture system and super-resolution imaging technologies to provide a physiologically relevant fluid flow environment and allows sensitive real-time analysis of the products screened in vitro. The third module aims at validating the in vitro screening model by assessing the nutritional properties of selected food products in humans. Because of the immunomodulatory properties of milk as well as its amenability to technological transformation, dairy products have been selected as model foods. The NutriChip project reflects the opening of food and nutrition sciences to state-of-the-art technologies, a key step in the translation of transdisciplinary knowledge into nutritional advice.
Resumo:
The electron Monte Carlo (eMC) dose calculation algorithm available in the Eclipse treatment planning system (Varian Medical Systems) is based on the macro MC method and uses a beam model applicable to Varian linear accelerators. This leads to limitations in accuracy if eMC is applied to non-Varian machines. In this work eMC is generalized to also allow accurate dose calculations for electron beams from Elekta and Siemens accelerators. First, changes made in the previous study to use eMC for low electron beam energies of Varian accelerators are applied. Then, a generalized beam model is developed using a main electron source and a main photon source representing electrons and photons from the scattering foil, respectively, an edge source of electrons, a transmission source of photons and a line source of electrons and photons representing the particles from the scrapers or inserts and head scatter radiation. Regarding the macro MC dose calculation algorithm, the transport code of the secondary particles is improved. The macro MC dose calculations are validated with corresponding dose calculations using EGSnrc in homogeneous and inhomogeneous phantoms. The validation of the generalized eMC is carried out by comparing calculated and measured dose distributions in water for Varian, Elekta and Siemens machines for a variety of beam energies, applicator sizes and SSDs. The comparisons are performed in units of cGy per MU. Overall, a general agreement between calculated and measured dose distributions for all machine types and all combinations of parameters investigated is found to be within 2% or 2 mm. The results of the dose comparisons suggest that the generalized eMC is now suitable to calculate dose distributions for Varian, Elekta and Siemens linear accelerators with sufficient accuracy in the range of the investigated combinations of beam energies, applicator sizes and SSDs.
Resumo:
Objective. The purpose of this study was to determine the dose profile of the Cranex Tome radiography unit and compare it with that of the Scanora machine.Study design. The radiation dose delivered by the Cranex Tome radiography unit during the cross-sectional mode was determined. Single tooth gaps in regions 3 (16) and 30 (46) were simulated. Dosimetry was carried out with 2 phantoms, a head and neck phantom and a full-body phantom loaded with 142 thermoluminescent dosimeters (TLD) and 280 TLD, respectively; all locations corresponded to radiosensitive organs or tissues. The recorded local mean organ doses were compared with those measured in another study evaluating the Scanora machine.Results. Generally, dose values from the Cranex Tome radiography unit reached only 50% to 60% of the values measured for the Scanora machine. The effective dose was calculated as 0.061 mSv and 0.04 mSv for tooth regions 3 (16) and 30 (46), respectively. Corresponding values for the Scanora machine were 0.117 mSv and 0.084 mSv.Conclusion. Cross-sectional imaging in the molar region of the upper and the lower jaw can be performed with the Cranex Tome unit, which delivers only approximately half of the dose that the Scanora machine delivers.
Resumo:
OBJECTIVE: The purpose of this study was to adapt and improve a minimally invasive two-step postmortem angiographic technique for use on human cadavers. Detailed mapping of the entire vascular system is almost impossible with conventional autopsy tools. The technique described should be valuable in the diagnosis of vascular abnormalities. MATERIALS AND METHODS: Postmortem perfusion with an oily liquid is established with a circulation machine. An oily contrast agent is introduced as a bolus injection, and radiographic imaging is performed. In this pilot study, the upper or lower extremities of four human cadavers were perfused. In two cases, the vascular system of a lower extremity was visualized with anterograde perfusion of the arteries. In the other two cases, in which the suspected cause of death was drug intoxication, the veins of an upper extremity were visualized with retrograde perfusion of the venous system. RESULTS: In each case, the vascular system was visualized up to the level of the small supplying and draining vessels. In three of the four cases, vascular abnormalities were found. In one instance, a venous injection mark engendered by the self-administration of drugs was rendered visible by exudation of the contrast agent. In the other two cases, occlusion of the arteries and veins was apparent. CONCLUSION: The method described is readily applicable to human cadavers. After establishment of postmortem perfusion with paraffin oil and injection of the oily contrast agent, the vascular system can be investigated in detail and vascular abnormalities rendered visible.