4 resultados para MULTILOCUS ENZYME ELECTROPHORESIS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A robust, inexpensive, and fully validated CE method for the simultaneous determination of the enantiomers of propafenone (PPF), 5-hydroxy-propafenone (5OH-PPF) and N-despropyl-propafenone (NOR-PPF) in serum and in in vitro media is described. It is based upon liquid-liquid extraction at alkaline pH followed by analysis of the reconstituted extract by CE in presence of a pH 2.0 running buffer composed of 100 mM sodium phosphate, 19% methanol, and 0.6% highly sulfated beta-CD. For each compound, the S-enantiomers are shown to migrate ahead of their antipodes, and the overall run time is about 30 min. Enantiomer levels between 25 and 1000 ng/mL provide linear calibration graphs, and the LOD for all enantiomers is between 10 and 12 ng/mL. The assay is shown to be suitable for the determination of the enantiomers of PPF and its metabolites in in vitro incubations comprising human liver microsomes or single CYP450 enzymes (SUPERSOMES). Incubations with CYP2D6 SUPERSOMES revealed, for the first time, the simultaneous formation of the enantiomers of 5OH-PPF and NOR-PPF with that enzyme. CE data can be used for the evaluation of the enzymatic N-dealkylation and hydroxylation rates.
Resumo:
Ethyl glucuronide (EtG) is a marker of recent alcohol consumption. For the optimization of the analysis of EtG by CZE with indirect absorbance detection, the use of capillaries with permanent and dynamic wall coatings, the composition of the BGE, and various sample preparation procedures, including dilution with water, ultrafiltration, protein precipitation, and SPE, were investigated. Two validated screening assays for the determination of EtG in human serum, a CZE-based approach and an enzyme immunoassay (EIA), are described. The CZE assay uses a coated capillary, 2,4-dimethylglutaric acid as an internal standard, and a pH 4.65 BGE comprising 9 mM nicotinic acid, epsilon-aminocaproic acid and 10% v/v ACN. Proteins are removed via precipitation with ACN prior to analysis and the LOQ is 0.50 mg/L. The EIA is based upon commercial reagents which are promoted for the determination of urinary EtG. Krebs-Ringer solution containing 5% BSA is used as a calibration matrix. All samples are ultrafiltered prior to analysis of the ultrafiltrate on a Mira Plus analyzer. Assay calibration ranged between 0 and 2 mg/L and the upper reference limit was determined to be 0.05 mg/L. Both assays proved to be suitable for the analysis of samples from different individuals. For EtG levels above 0.50 mg/L, good agreement was observed for the comparison of the results of the two methods.
Resumo:
Cleavage of the beta-amyloid precursor protein (APP) by the aspartyl protease beta-site APP-cleaving enzyme (BACE) is the first step in the generation of the amyloid beta-peptide, which is deposited in the brain of Alzheimer's disease patients. Whereas the subsequent cleavage by gamma-secretase was shown to originate from the cooperation of a multicomponent complex, it is currently unknown whether in a cellular environment BACE is enzymatically active as a monomer or in concert with other proteins. Using blue native gel electrophoresis we found that endogenous and overexpressed BACE has a molecular mass of 140 kDa instead of the expected mass of 70 kDa under denaturing conditions. This suggests that under native conditions BACE exists as a homodimer. Homodimerization was confirmed by co-immunoprecipitation of full-length BACE carrying different epitope tags. In contrast, the soluble active BACE ectodomain was exclusively present as a monomer both under native and denaturing conditions. A domain analysis revealed that the BACE ectodomain dimerized as long as it was attached to the membrane, whereas the cytoplasmic domain and the transmembrane domain were dispensable for dimerization. By adding a KKXX-endoplasmic reticulum retention signal to BACE, we demonstrate that dimerization of BACE occurs already before full maturation and pro-peptide cleavage. Furthermore, kinetic analysis of the purified native BACE dimer revealed a higher affinity and turnover rate in comparison to the monomeric soluble BACE. Dimerization of BACE might, thus, facilitate binding and cleavage of physiological substrates.
Resumo:
Cytochrome P450 (CYP) enzymes catalyze the metabolism of both, the analgesic and anesthetic drug ketamine and the α2 -adrenergic receptor-agonist medetomidine that is used for sedation and analgesia. As racemic medetomidine or its active enantiomer dexmedetomidine are often coadministered with racemic or S-ketamine in animals and dexmedetomidine together with S- or racemic ketamine in humans, drug-drug interactions are likely to occur and have to be characterized. Enantioselective CE with highly sulfated γ-cyclodextrin as chiral selector was employed for analyzing in vitro (i) the kinetics of the N-demethylation of ketamine mediated by canine CYP3A12 and (ii) interactions occurring with racemic medetomidine and dexmedetomidine during coincubation with ketamine and canine liver microsomes (CLM), canine CYP3A12, human liver microsomes (HLM), and human CYP3A4. For CYP3A12 without an inhibitor, Michaelis-Menten kinetics was determined for the single enantiomers of ketamine and substrate inhibition kinetics for racemic ketamine. Racemic medetomidine and dexmedetomidine showed an inhibition of the N-demethylation reaction in the studied canine enzyme systems. Racemic medetomidine is the stronger inhibitor for CLM, whereas there is no difference for CYP3A12. For CLM and CYP3A12, the inhibition of dexmedetomidine is stronger for the R- compared to the S-enantiomer of ketamine, a stereoselectivity that is not observed for CYP3A4. Induction is observed at a low dexmedetomidine concentration with CYP3A4 but not with CYP3A12, CLM, and HLM. Based on these results, S-ketamine combined with dexmedetomidine should be the best option for canines. The enantioselective CE assay with highly sulfated γ-cyclodextrin as chiral selector is an effective tool for determining kinetic and inhibition parameters of metabolic pathways.