6 resultados para MONOTONICITY
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We consider collective decision problems given by a profile of single-peaked preferences defined over the real line and a set of pure public facilities to be located on the line. In this context, Bochet and Gordon (2012) provide a large class of priority rules based on efficiency, object-population monotonicity and sovereignty. Each such rule is described by a fixed priority ordering among interest groups. We show that any priority rule which treats agents symmetrically — anonymity — respects some form of coherence across collective decision problems — reinforcement — and only depends on peak information — peakonly — is a weighted majoritarian rule. Each such rule defines priorities based on the relative size of the interest groups and specific weights attached to locations. We give an explicit account of the richness of this class of rules.
Resumo:
Fossil pollen data from stratigraphic cores are irregularly spaced in time due to non-linear age-depth relations. Moreover, their marginal distributions may vary over time. We address these features in a nonparametric regression model with errors that are monotone transformations of a latent continuous-time Gaussian process Z(T). Although Z(T) is unobserved, due to monotonicity, under suitable regularity conditions, it can be recovered facilitating further computations such as estimation of the long-memory parameter and the Hermite coefficients. The estimation of Z(T) itself involves estimation of the marginal distribution function of the regression errors. These issues are considered in proposing a plug-in algorithm for optimal bandwidth selection and construction of confidence bands for the trend function. Some high-resolution time series of pollen records from Lago di Origlio in Switzerland, which go back ca. 20,000 years are used to illustrate the methods.
Resumo:
We derive multiscale statistics for deconvolution in order to detect qualitative features of the unknown density. An important example covered within this framework is to test for local monotonicity on all scales simultaneously. We investigate the moderately ill-posed setting, where the Fourier transform of the error density in the deconvolution model is of polynomial decay. For multiscale testing, we consider a calibration, motivated by the modulus of continuity of Brownian motion. We investigate the performance of our results from both the theoretical and simulation based point of view. A major consequence of our work is that the detection of qualitative features of a density in a deconvolution problem is a doable task, although the minimax rates for pointwise estimation are very slow.
Resumo:
We consider the problem of nonparametric estimation of a concave regression function F. We show that the supremum distance between the least square s estimatorand F on a compact interval is typically of order(log(n)/n)2/5. This entails rates of convergence for the estimator’s derivative. Moreover, we discuss the impact of additional constraints on F such as monotonicity and pointwise bounds. Then we apply these results to the analysis of current status data, where the distribution function of the event times is assumed to be concave.
Resumo:
Let Y_i = f(x_i) + E_i\ (1\le i\le n) with given covariates x_1\lt x_2\lt \cdots\lt x_n , an unknown regression function f and independent random errors E_i with median zero. It is shown how to apply several linear rank test statistics simultaneously in order to test monotonicity of f in various regions and to identify its local extrema.