8 resultados para MODERN HUMANS

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the last few years, two paradigms underlying human evolution have crumbled. Modern humans have not totally replaced previous hominins without any admixture, and the expected signatures of adaptations to new environments are surprisingly lacking at the genomic level. Here we review current evidence about archaic admixture and lack of strong selective sweeps in humans. We underline the need to properly model differential admixture in various populations to correctly reconstruct past demography. We also stress the importance of taking into account the spatial dimension of human evolution, which proceeded by a series of range expansions that could have promoted both the introgression of archaic genes and background selection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several lines of genetic, archeological and paleontological evidence suggest that anatomically modern humans (Homo sapiens) colonized the world in the last 60,000 years by a series of migrations originating from Africa (e.g. Liu et al., 2006; Handley et al., 2007; Prugnolle, Manica, and Balloux, 2005; Ramachandran et al. 2005; Li et al. 2008; Deshpande et al. 2009; Mellars, 2006a, b; Lahr and Foley, 1998; Gravel et al., 2011; Rasmussen et al., 2011). With the progress of ancient DNA analysis, it has been shown that archaic humans hybridized with modern humans outside Africa. Recent direct analyses of fossil nuclear DNA have revealed that 1–4 percent of the genome of Eurasian has been likely introgressed by Neanderthal genes (Green et al., 2010; Reich et al., 2010; Vernot and Akey, 2014; Sankararaman et al., 2014; Prufer et al., 2014; Wall et al., 2013), with Papua New Guineans and Australians showing even larger levels of admixture with Denisovans (Reich et al., 2010; Skoglund and Jakobsson, 2011; Reich et al., 2011; Rasmussen et al., 2011). It thus appears that the past history of our species has been more complex than previously anticipated (Alves et al., 2012), and that modern humans hybridized several times with local hominins during their expansion out of Africa, but the exact mode, time and location of these hybridizations remain to be clarifi ed (Ibid.; Wall et al., 2013). In this context, we review here a general model of admixture during range expansion, which lead to some predictions about expected patterns of introgression that are relevant to modern human evolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most previous attempts at reconstructing the past history of human populations did not explicitly take geography into account, or considered very simple scenarios of migration and ignored environmental information. However, it is likely that the Last Glacial Maximum (LGM) affected the demography and the range of many species, including our own. Moreover, long-distance dispersal (LDD) may have been an important component of human migrations, allowing fast colonization of new territories and preserving high levels of genetic diversity. Here, we use a high-quality microsatellite dataset genotyped in 22 populations to estimate the posterior probabilities of several scenarios for the settlement of the Old World by modern humans. We considered models ranging from a simple spatial expansion to others including LDD and a LGM-induced range contraction, as well as Neolithic demographic expansions. We find that scenarios with LDD are much better supported by data than models without LDD. Nevertheless, we show evidence that LDD events to empty habitats were strongly prevented during the settlement of Eurasia. This unexpected absence of LDD ahead of the colonization wave front could have been caused by an Allee effect, either due to intrinsic causes such as an inbreeding depression built during the expansion, or to extrinsic causes such as direct competition with archaic humans. Overall, our results suggest only a relatively limited effect of the LGM-contraction on current patterns of human diversity. This is in clear contrast with the major role of LDD migrations, which have potentially contributed to the intermingled genetic structure of Eurasian populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Out-of-Africa (OOA) dispersal ∼50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spiders have one pair of venom glands, and only a few families have reduced them completely (Uloboridae, Holarchaeidae) or modified them to another function (Symphytognathidae or Scytodidae, see Suter and Stratton 2013). All other 42,000 known spider species (99%) utilize their venom to inject it into prey items, which subsequently become paralysed or are killed. Spider venom is a complex mixture of hundreds of components, many of them interacting with cell membranes or receptors located mainly in the nervous or muscular system (Herzig and King 2013). Spider venom, as it is today, has a 300-million-yearlong history of evolution and adaptation and can be considered as an optimized tool to subdue prey. In Mesothelae, the oldest spider group with less than 100 species, the venom glands lie in the anterior part of the cheliceral basal segment. They are very small and do not support the predation process very effectively. In Mygalomorphae, the venom glands are well developed and fill the basal cheliceral segment more or less completely. Many of these 3,000 species are medium- to large-/very large-sized spiders, and they have created the image of being dangerous beasts, attacking and killing a variety of animals, including humans. Although this picture is completely wrong, it is persistent and contributes considerably to human arachnophobia. The third group of spiders, Araneomorphae or “modern spiders”, comprises 93% of all spider species. The venom glands are enlarged and extend to the prosoma; the openings of the venom ducts are moved from the convex to the concave side of the cheliceral fangs and enlarged as well. These changes save the chelicerae from the necessity of being large, and hence, on the average, araneomorph spiders are much smaller than mygalomorphs. Nevertheless, they possess relatively large venom glands, situated mainly in the prosoma, and may also have rather potent venom.