9 resultados para MN(II)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Benzodifuran-functionalised pyrene and anthracene fluorophores 1 and 2 were obtained in reasonable yields. Their single crystal structures, electrochemical, optical absorption, and fluorescence characteristics have been described. They show strong luminescence with high quantum yields of 0.53 for 1 and 0.48 for 2. Magnetic measurements for the 2D coordination polymer [Mn(Pht(Pyz(H2O)2]n (1), in which metal centres are linked together by pyrazine (Pyz) and 1,6-bridging o-phthalate ligand (Pht2-), revealed antiferromagnetic interactions between Mn(II) ions.
Resumo:
The compound of stoichiometry Mn(II)3[Mn(III)(CN)6]2·zH2O (z = 12−16) (1) forms air-stable, transparent red crystals. Low-temperature single crystal optical spectroscopy and single crystal X-ray diffraction provide compelling evidence for N-bonded high-spin manganese(II), and C-bonded low-spin manganese(III) ions arranged in a disordered, face-centered cubic lattice analogous to that of Prussian Blue. X-ray and neutron diffraction show structured diffuse scattering indicative of partially correlated (rather than random) substitutions of [Mn(III)(CN)6] ions by (H2O)6 clusters. Magnetic susceptibility measurements and elastic neutron scattering experiments indicate a ferrimagnetic structure below the critical temperature Tc = 35.5 K.
Resumo:
In analogy to the [M(II)(bpy)(3)](2+) cations, where M(II) is a divalent transition-metal and bpy is 2,2'-bipyridine, the tris-chelated [M(III)(bpy)(3)](3+) cations, where M(III) is Cr(III) or Co(III), induce the crystallization of chiral, anionic three-dimensional (3D) coordination polymers of oxalate-bridged (&mgr;-ox) metal complexes with stoichiometries [M(II)(2)(ox)(3)](n)()(2)(n)()(-) or [M(I)M(III)(ox)(3)](n)()(2)(n)()(-). The tripositive charge is partially compensated by inclusion of additional complex anions like ClO(4)(-), BF(4)(-), or PF(6)(-) which are encapsulated in cubic shaped cavities formed by the bipyridine ligands of the cations. Thus, an elaborate structure of cationic and anionic species within a polymeric anionic network is realized. The compounds isolated and structurally characterized include [Cr(III)(bpy)(3)][ClO(4)] [NaCr(III)(ox)(3)] (1), [Cr(III)(bpy)(3)][ClO(4)][Mn(II)(2)(ox)(3)] (2), [Cr(III)(bpy)(3)][BF(4)] [Mn(II)(2)(ox)(3)] (3), [Co(III)(bpy)(3)][PF(6)][NaCr(III)(ox)(3)] (4). Crystal data: 1, cubic, P2(1)3, a = 15.523(4) Å, Z = 4; 2, cubic, P4(1)32, a = 15.564(3) Å, Z = 4; 3, cubic, P4(1)32, a = 15.553(3) Å, Z = 4; 4, cubic, P2(1)3, a = 15.515(3) Å, Z = 4. Furthermore, it seemed likely that 1,2-dithiooxalate (dto) could act as an alternative to the oxalate bridging ligand, and as a result the compound [Ni(II)(phen)(3)][NaCo(III)(dto)(3)].C(3)H(6)O (5) has successfully been isolated and structurally characterized. Crystal data: 5, orthorhombic, P2(1)2(1)2(1), a = 16.238(4) Å, b = 16.225(4) Å, c = 18.371(5) Å, Z = 4. In addition, the photophysical properties of compound 1 have been investigated in detail. In single crystal absorption spectra of [Cr(III)(bpy)(3)][ClO(4)][NaCr(III)(ox)(3)] (1), the spin-flip transitions of both the [Cr(bpy)(3)](3+) and the [Cr(ox)(3)](3)(-) chromophores are observed and can be clearly distinguished. Irradiating into the spin-allowed (4)A(2) --> (4)T(2) absorption band of [Cr(ox)(3)](3)(-) results in intense luminescence from the (2)E state of [Cr(bpy)(3)](3+) as a result of rapid energy transfer processes.
Resumo:
The numerical simulations of the magnetic properties of extended three-dimensional networks containing M(II) ions with an S = 5/2 ground-state spin have been carried out within the framework of the isotropic Heisenberg model. Analytical expressions fitting the numerical simulations for the primitive cubic, diamond, together with (10−3) cubic networks have all been derived. With these empirical formulas in hands, we can now extract the interaction between the magnetic ions from the experimental data for these networks. In the case of the primitive cubic network, these expressions are directly compared with those from the high-temperature expansions of the partition function. A fit of the experimental data for three complexes, namely [(N(CH3)4][Mn(N3)] 1, [Mn(CN4)]n 2, and [FeII(bipy)3][MnII2(ox)3] 3, has been carried out. The best fits were those obtained using the following parameters, J = −3.5 cm-1, g = 2.01 (1); J = −8.3 cm-1, g = 1.95 (2); and J = −2.0 cm-1, g = 1.95 (3).