4 resultados para MICROLEAKAGE
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVES AND METHODS: This study investigated the sealing ability of a current available unfilled fissure sealant applied over sound (n=80), artificially created (n=80) and naturally carious fissures (n=80) under different humidity conditions (90+/-2 and 45+/-2% relative humidity) and etching times (40 and 60s). All samples were submitted to 5000 thermal cycles and examined by light microscopy after sectioning. Microleakage, penetration ability, fissure type, fissure entrance angle, sealant occlusal length, caries location and caries depth were assessed. RESULTS: The significantly longer sealant occlusal length and larger entrance angle exhibited by shallow fissures, contributed to their higher microleakage and smaller amounts of unfilled areas compared to deep fissures. Sealant microleakage was significantly influenced by the condition of the enamel (sound, artificial and natural caries) and the caries location in the fissures, but not by enamel caries depth (D1 and D2), etching time, or humidity condition. Natural caries exhibited significantly higher microleakage than sound or artificially created carious fissures. CONCLUSIONS: Based on the results of this study, it can be concluded that location of caries in the fissure rather than its depth should be taken into account when applying a fissure sealant. When the borders of the fissure sealant are on carious enamel, a significantly higher microleakage must be expected. The artificial caries model was not a suitable method to assess the behavior of natural fissure caries.
Resumo:
PURPOSE: To assess the effects of the highly reactive molecule of ozone on sound enamel physical properties and its effects on sealing ability. METHODS: The effect of ozone on sealant tag length, microleakage and unfilled area proportion were evaluated on intact and prepared sound molar fissures. Microhardness, contact angle and acid resistance tests were performed on ground sound smooth surfaces. The samples were treated with ozone for 40 seconds (HealOzone). Control samples were treated with air (modified HealOzone) or left untreated. RESULTS: No statistically significant difference was observed between the control and ozone treated samples in all tests. Prepared fissures exhibited no unfilled areas and a statistically significantly lower microleakage compared to intact fissures. Ozone was shown to dehydrate enamel and consequently enhance its microhardness, which was reversible.
Resumo:
Three different fissure preparation procedures were tested and compared to the non-invasive approach using a conventional unfilled sealant and a flowable composite. Eighty permanent molars were selected and divided into 4 groups of 20 teeth each. All the teeth were split into 2 halves, and the exposed fissures were photographed under a microscope (35x) before and after being prepared using the following methods: (I) Er:YAG laser (KEY Laser, KaVo) 600 mJ pulse energy, 6 Hz; (II) diamond bur; (III) Er: YAG laser (KEY Laser, KaVo) 200 mJ pulse energy, 4 Hz; (IV) Control group: Powder jet cleaner (Prophyflex, KaVo, Germany). The pre-and postimages were superimposed in order to evaluate the amount of hard tissue removed. Ten teeth in each group were then acid etched and sealed with an unfilled sealant (Delton opaque, Dentsply), while the remaining 10 teeth were acid etched, primed and bonded (Prime ; Bond NT, Dentsply) and sealed with a flowable composite (X-flow, DeTrey, Dentsply). Material penetration and microleakage were evaluated after thermocycling (5000 cycles) and staining with methylene blue 5%. ANOVA and Mann-Whitney tests were applied for statistical analysis. The laser 600 mJ and bur eliminated the greatest amount of hard tissue. The control teeth presented the least microleakage when sealed with Delton or X-flow. A correlation between material penetration and microleakage could not be statistically confirmed. Mechanical preparation prior to fissure sealing did not enhance the final performance of the sealant.
Resumo:
The aim of the study was to compare fissure sealant quality after mechanical conditioning of erbium-doped yttrium aluminium garnet (Er:YAG) laser or air abrasion prior to chemical conditioning of phosphoric acid etching or of a self-etch adhesive. Twenty-five permanent molars were initially divided into three groups: control group (n = 5), phosphoric acid etching; test group 1 (n = 10), air abrasion; and test group 2, (n = 10) Er:YAG laser. After mechanical conditioning, the test group teeth were sectioned buccolingually and the occlusal surface of one half tooth (equal to one sample) was acid etched, while a self-etch adhesive was applied on the other half. The fissure system of each sample was sealed, thermo-cycled and immersed in 5% methylene dye for 24 h. Each sample was sectioned buccolingually, and one slice was analysed microscopically. Using specialized software microleakage, unfilled margin, sealant failure and unfilled area proportions were calculated. A nonparametric ANOVA model was applied to compare the Er:YAG treatment with that of air abrasion and the self-etch adhesive with phosphoric acid (α = 0.05). Test groups were compared to the control group using Wilcoxon rank sum tests (α = 0.05). The control group displayed significantly lower microleakage but higher unfilled area proportions than the Er:YAG laser + self-etch adhesive group and displayed significantly higher unfilled margin and unfilled area proportions than the air-abrasion + self-etch adhesive group. There was no statistically significant difference in the quality of sealants applied in fissures treated with either Er:YAG laser or air abrasion prior to phosphoric acid etching, nor in the quality of sealants applied in fissures treated with either self-etch adhesive or phosphoric acid following Er:YAG or air-abrasion treatment.