65 resultados para MICROBIAL PENETRATION
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The aim of this in vitro study was to evaluate the relationship between laser fluorescence values and sealant penetration depth on occlusal fissures. One hundred and sixty-six permanent molars were selected and divided into four groups, which were each treated using a different sealant (two clear and two opaque). The teeth were independently measured twice by two experienced dentists using two laser fluorescence devices-DIAGNOdent (LF and LFpen)-before and after sealing, and then thermoclycled. After measuring, the teeth were histologically prepared and assessed for caries extension. Digital photographs of the cut sealed sites were assessed, and the sealant penetration depth was measured. All 166 sites were measured by one of the examiners taking as limits the outer and inner surface of the sealant into the fissure. For each device (LF and LFpen) and each group, the difference between the values at baseline and after sealing was plotted against the sealant penetration depth and scatter plots were provided. It could be observed that most of the points were concentrated around the zero line, for both LF and LFpen in the four groups. In conclusion, there is no relation between changes in DIAGNOdent values and increasing of depth sealant penetration within the occlusal fissures.
Resumo:
Surface platforms were engineered from poly(L-lysine)-graft-poly(2-methyl-2-oxazoline) (PLL-g-PMOXA) copolymers to study the mechanisms involved in the non-specific adhesion of Escherichia coli (E. coli) bacteria. Copolymers with three different grafting densities (PMOXA chains/Lysine residue of 0.09, 0.33 and 0.56) were synthesized and assembled on niobia (Nb O ) surfaces. PLL-modified and bare niobia surfaces served as controls. To evaluate the impact of fimbriae expression on the bacterial adhesion, the surfaces were exposed to genetically engineered E. coli strains either lacking, or constitutively expressing type 1 fimbriae. The bacterial adhesion was strongly influenced by the presence of bacterial fimbriae. Non-fimbriated bacteria behaved like hard, charged particles whose adhesion was dependent on surface charge and ionic strength of the media. In contrast, bacteria expressing type 1 fimbriae adhered to the substrates independent of surface charge and ionic strength, and adhesion was mediated by non-specific van der Waals and hydrophobic interactions of the proteins at the fimbrial tip. Adsorbed polymer mass, average surface density of the PMOXA chains, and thickness of the copolymer films were quantified by optical waveguide lightmode spectroscopy (OWLS) and variable-angle spectroscopic ellipsometry (VASE), whereas the lateral homogeneity was probed by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Streaming current measurements provided information on the charge formation of the polymer-coated and the bare niobia surfaces. The adhesion of both bacterial strains could be efficiently inhibited by the copolymer film only with a grafting density of 0.33 characterized by the highest PMOXA chain surface density and a surface potential close to zero.
Resumo:
The lower intestine of adult mammals is densely colonized with nonpathogenic (commensal) microbes. Gut bacteria induce protective immune responses, which ensure host-microbial mutualism. The continuous presence of commensal intestinal bacteria has made it difficult to study mucosal immune dynamics. Here, we report a reversible germ-free colonization system in mice that is independent of diet or antibiotic manipulation. A slow (more than 14 days) onset of a long-lived (half-life over 16 weeks), highly specific anticommensal immunoglobulin A (IgA) response in germ-free mice was observed. Ongoing commensal exposure in colonized mice rapidly abrogated this response. Sequential doses lacked a classical prime-boost effect seen in systemic vaccination, but specific IgA induction occurred as a stepwise response to current bacterial exposure, such that the antibody repertoire matched the existing commensal content.
Resumo:
Background Polymorphonuclear neutrophils (PMN) play a key role in host defences against invading microorganisms but can also potentiate detrimental inflammatory reactions in case of excessive or misdirected responses. Intravenous immunoglobulins (IVIg) are used to treat patients with immune deficiencies and, at higher doses, in autoimmune, allergic and systemic inflammatory disorders. Methodology/Principal Findings We used flow cytometry to examine the effects of IVIg on PMN functions and survival, using whole-blood conditions in order to avoid artifacts due to isolation procedures. IVIg at low concentrations induced PMN activation, as reflected by decreased L-selectin and increased CD11b expression at the PMN surface, oxidative burst enhancement, and prolonged cell survival. In contrast, IVIg at higher concentrations inhibited LPS-induced CD11b degranulation and oxidative burst priming, and counteracted LPS-induced PMN lifespan prolongation. Conclusions/Significance IVIg appears to have differential, concentration-dependent effects on PMN, possibly supporting the use of IVIg as either an anti-microbial or an anti-inflammatory agent.
Resumo:
How a mutualistic relationship between the intestinal microbiota and intestinal T cell compartments is established is important, as a breakdown of intestinal T cell homeostasis may cause inflammatory bowel diseases. A number of studies have shown that different bacterial species modulate the intestinal CD4+ T cell compartment in different ways. We performed mechanistic in vivo studies that demonstrated the crucial requirement for regulatory T cells (Treg) and interleukin-10 (IL-10) in the induction of intestinal T cell homeostasis even following colonization with a completely benign microbiota. In the absence of a functional Treg response or IL-10 receptor signaling, the same bacteria that induced a Treg response in wild-type animals now induced T helper type 17 responses, without intestinal inflammation. Therefore, Treg, IL-10 and Th17 are crucial regulatory mechanisms in the intestine not only for controlling inflammation, but also to establish a continuum of CD4+ T cell homeostasis upon commensal colonization.
Resumo:
To analyze the influence of corneal cross-linking (CXL) using ultraviolet-A and riboflavin on corneal drug penetration of topically applied drugs.
Resumo:
The large production of immunoglobulin (Ig)A is energetically costly. The fact that evolution retained this apparent luxury of intestinal class switch recombination to IgA within the human population strongly indicates that there must be a critical specific function of IgA for survival of the species. The function of IgA has been investigated in a series of different models that will be discussed here. While IgA has clear protective functions against toxins or in the context of intestinal viral infections, the function of IgA specific for non-pathogenic commensal bacteria remains unclear. In the context of the current literature we present a hypothesis where secretory IgA integrates as an additional layer of immune function into the continuum of intestinal CD4 T cell responses, to achieve a mutualistic relationship between the intestinal commensal microbiota and the host.
Resumo:
The human epithelial cell adhesion molecule (EpCAM) is highly expressed in a variety of clinical tumour entities. Although an antibody against EpCAM has successfully been used as an adjuvant therapy in colon cancer, this therapy has never gained wide-spread use. We have therefore investigated the possibilities and limitations for EpCAM as possible molecular imaging target using a panel of preclinical cancer models. Twelve human cancer cell lines representing six tumour entities were tested for their EpCAM expression by qPCR, flow cytometry analysis and immunocytochemistry. In addition, EpCAM expression was analyzed in vivo in xenograft models for tumours derived from these cells. Except for melanoma, all cell lines expressed EpCAM mRNA and protein when grown in vitro. Although they exhibited different mRNA levels, all cell lines showed similar EpCAM protein levels upon detection with monoclonal antibodies. When grown in vivo, the EpCAM expression was unaffected compared to in vitro except for the pancreatic carcinoma cell line 5072 which lost its EpCAM expression in vivo. Intravenously applied radio-labelled anti EpCAM MOC31 antibody was enriched in HT29 primary tumour xenografts indicating that EpCAM binding sites are accessible in vivo. However, bound antibody could only be immunohistochemically detected in the vicinity of perfused blood vessels. Investigation of the fine structure of the HT29 tumour blood vessels showed that they were immature and prone for higher fluid flux into the interstitial space. Consistent with this hypothesis, a higher interstitial fluid pressure of about 12 mbar was measured in the HT29 primary tumour via "wick-in-needle" technique which could explain the limited diffusion of the antibody into the tumour observed by immunohistochemistry.
Resumo:
Immunoglobulin A (IgA) is the main secretory immunoglobulin of mucous membranes and is powerfully induced by the presence of commensal microbes in the intestine. B cells undergo class switch recombination to IgA in the mucosa-associated lymphoid tissues, particularly mesenteric lymph nodes (MLNs) and Peyer's patches, through both T-dependent and T-independent pathways. IgA B cells primed in the mucosa traffic from the intestinal lymphoid structures, initially through the lymphatics and then join the bloodstream, to home back to the intestinal mucosa as IgA-secreting plasma cells. Once induced, anti-bacterial IgA can be extremely long-lived but is replaced if there is induction of additional IgA specificities by other microbes. The mucosal immune system is anatomically separated from the systemic immune system by the MLNs, which act as a firewall to prevent penetration of live intestinal bacteria to systemic sites. Dendritic cells sample intestinal bacteria and induce B cells to switch to IgA. In contrast, intestinal macrophages are adept at killing extracellular bacteria and are able to clear bacteria that have crossed the mucus and epithelial barriers. There is both a continuum between innate and adaptive immune mechanisms and compartmentalization of the mucosal immune system from systemic immunity that function to preserve host microbial mutualism.
Resumo:
BACKGROUND: Little is known about the ocular penetration of echinocandin antifungals. We studied the ocular distribution of systemically administered caspofungin in a rabbit uveitis model. METHODS: Caspofungin (1 mg/kg per day) was given intravenously to rabbits as a single dose or as repeated daily doses on 7 days starting 24 h after induction of unilateral uveitis by intravitreal endotoxin injection. Caspofungin concentrations were determined by high-performance liquid chromatography in the cornea, aqueous humor, vitreous humor, and serum 4, 8, 16, and 24 h after administration of a single dose and 24 h after the last of seven doses. RESULTS: The mean caspofungin concentration in the aqueous of the inflamed eye 4 and 8 h after single-dose administration was 1.30 +/- 0.39 mug/ml and 1.12 +/- 0.34 mug/ml, respectively. Drug concentrations decreased to 0.24 +/- 0.09 mug/ml at 16 h and 0.26 +/- 0.14 mug/ml at 24 h. In the vitreous of inflamed eyes drug levels were undetectable at all time points. No drug was found in the aqueous of inflamed eyes 24 h after the last of seven repeated doses, and the vitreous only contained trace amounts. In the corneas of inflamed eyes concentrations reached 1.64 +/- 0.48 mug/g at 4 h, peaked at 2.16 +/- 1.14 mug/g at 8 h, and declined to 1.87 +/- 0.52 mug/g and 1.49 +/- 0.48 mug/g at 16 and 24 h, respectively. After repeated dosing, corneal concentrations of caspofungin were 0.8 and 1.0 mug/g and below the limit of detection in two of four animals. In non-inflamed eyes no drug was detectable in the aqueous and vitreous humor, and the corneas at any time point. CONCLUSIONS: In our model, caspofungin reached therapeutically relevant levels in the aqueous and cornea but not in the vitreous humor of inflamed eyes. Intraocular drug deposition was critically dependent on a disrupted blood-eye barrier. These findings suggest a limited role for caspofungin in the treatment of fungal endophthalmitis.