18 resultados para MHD instabilities

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use density functional theory to explore the interplay between octahedral rotations and ferroelectricity in the model compound SrTiO3. We find that over the experimentally relevant range octahedral rotations suppress ferroelectricity as is generally assumed in the literature. Somewhat surprisingly, we observe that at larger angles the previously weakened ferroelectric instability strengthens significantly. By analyzing geometry changes, energetics, force constants and charges, we explain the mechanisms behind this transition from competition to cooperation with increasing octahedral rotation angle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the plasma environment of comet 67P/Churyumov-Gerasimenko, the target of the European Space Agency's Rosetta mission. Rosetta will rendezvous with the comet in 2014 at almost 3.5 AU and follow it all the way to and past perihelion at 1.3 AU. During its journey towards the inner solar system the comet's environment will significantly change. The interaction of the solar wind with a well developed neutral coma leads to the formation of an upstream bow shock and, closer to the comet, the inner shock separating the solar wind, with cometary pick-up ions mass-loaded, from the inner cometary ions which are dragged outward through abundant collisions and charge exchange with the expanding neutral gas. As a consequence the interplanetary magnetic field is prevented from penetrating the innermost region of the comet, the so-called magnetic cavity. We use our magnetohydrodynamics model BATSRUS (Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme) to simulate the solar wind - comet interaction. The model includes photoionization, ion-electron recombination, and charge exchange. Under certain conditions our model predicts an unstable plasma flow at the inner shock. We show that the plasma shear flow around the magnetic cavity can lead to Kelvin-Helmholtz instabilities. We investigate the onset of this phenomenon with change of heliocentric distance and furthermore show that a previously stable magnetic cavity boundary can become unstable when the neutral gas is predominately released from the dayside of the comet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of comets with the solar wind has been the focus of many studies including numerical modeling. We compare the results of our multifluid MHD simulation of comet 1P/Halley to data obtained during the flyby of the European Space Agency's Giotto spacecraft in 1986. The model solves the full set of MHD equations for the individual fluids representing the solar wind protons, the cometary light and heavy ions, and the electrons. The mass loading, charge-exchange, dissociative ion-electron recombination, and collisional interactions between the fluids are taken into account. The computational domain spans over several million kilometers, and the close vicinity of the comet is resolved to the details of the magnetic cavity. The model is validated by comparison to the corresponding Giotto observations obtained by the Ion Mass Spectrometer, the Neutral Mass Spectrometer, the Giotto magnetometer experiment, and the Johnstone Plasma Analyzer instrument. The model shows the formation of the bow shock, the ion pile-up, and the diamagnetic cavity and is able to reproduce the observed temperature differences between the pick-up ion populations and the solar wind protons. We give an overview of the global interaction of the comet with the solar wind and then show the effects of the Lorentz force interaction between the different plasma populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of a comet with the solar wind undergoes various stages as the comet’s activity varies along its orbit. For a comet like 67P/Churyumov–Gerasimenko, the target comet of ESA’s Rosetta mission, the various features include the formation of a Mach cone, the bow shock, and close to perihelion even a diamagnetic cavity. There are different approaches to simulate this complex interplay between the solar wind and the comet’s extended neutral gas coma which include magnetohydrodynamics (MHD) and hybrid-type models. The first treats the plasma as fluids (one fluid in basic single fluid MHD) and the latter treats the ions as individual particles under the influence of the local electric and magnetic fields. The electrons are treated as a charge-neutralizing fluid in both cases. Given the different approaches both models yield different results, in particular for a low production rate comet. In this paper we will show that these differences can be reduced when using a multifluid instead of a single-fluid MHD model and increase the resolution of the Hybrid model. We will show that some major features obtained with a hybrid type approach like the gyration of the cometary heavy ions and the formation of the Mach cone can be partially reproduced with the multifluid-type model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Jovian moon, Europa, hosts a thin neutral gas atmosphere, which is tightly coupled to Jupiter's magnetosphere. Magnetospheric ions impacting the surface sputter off neutral atoms, which, upon ionization, carry currents that modify the magnetic field around the moon. The magnetic field in the plasma is also affected by Europa's induced magnetic field. In this paper we investigate the environment of Europa using our multifluid MHD model and focus on the effects introduced by both the magnetospheric and the pickup ion populations. The model self-consistently derives the electron temperature that governs the electron impact ionization process, which is the major source of ionization in this environment. The resulting magnetic field is compared to measurements performed by the Galileo magnetometer, the bulk properties of the modeled thermal plasma population is compared to the Galileo Plasma Subsystem observations, and the modeled surface precipitation fluxes are compared to Galileo Ultraviolet Spectrometer observations. The model shows good agreement with the measured magnetic field and reproduces the basic features of the plasma interaction observed at the moon for both the E4 and the E26 flybys of the Galileo spacecraft. The simulation also produces perturbations asymmetric about the flow direction that account for observed asymmetries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present understanding of the initiation of boudinage and folding structures is based on viscosity contrasts and stress exponents, considering an intrinsically unstable state of the layer. The criterion of localization is believed to be prescribed by geometry-material interactions, which are often encountered in natural structures. An alternative localization phenomenon has been established for ductile materials, in which instability emerges for critical material parameters and loading rates from homogeneous conditions. In this thesis, conditions are sought under which this type of instability prevails and whether localization in geological materials necessarily requires a trigger by geometric imperfections. The relevance of critical deformation conditions, material parameters and the spatial configuration of instabilities are discussed in a geological context. In order to analyze boudinage geometries, a numerical eigenmode analysis is introduced. This method allows determining natural frequencies and wavelengths of a structure and inducing perturbations on these frequencies. In the subsequent coupled thermo-mechanical simulations, using a grain size evolution and end-member flow laws, localization emerges when material softening through grain size sensitive viscous creep sets in. Pinch-and-swell structures evolve along slip lines through a positive feedback between the matrix response and material bifurcations inside the layer, independent from the mesh-discretization length scale. Since boudinage and folding are considered to express the same general instability, both structures should arise independently of the sign of the loading conditions and for identical material parameters. To this end, the link between material to energy instabilities is approached by means of bifurcation analyses of the field equations and finite element simulations of the coupled system of equations. Boudinage and folding structures develop at the same critical energy threshold, where dissipative work by temperature-sensitive creep overcomes the diffusive capacity of the layer. This finding provides basis for a unified theory for strain localization in layered ductile materials. The numerical simulations are compared to natural pinch-and-swell microstructures, tracing the adaption of grain sizes, textures and creep mechanisms in calcite veins. The switch from dislocation to diffusion creep relates to strain-rate weakening, which is induced by dissipated heat from grain size reduction, and marks the onset of continuous necking. The time-dependent sequence uncovers multiple steady states at different time intervals. Microstructurally and mechanically stable conditions are finally expressed in the pinch-and-swell end members. The major outcome of this study is that boudinage and folding can be described as the same coupled energy-mechanical bifurcation, or as one critical energy attractor. This finding allows the derivation of critical deformation conditions and fundamental material parameters directly from localized structures in the field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zebrafish belladonna (bel) mutants carry a mutation in the lhx2 gene that encodes a Lim domain homeobox transcription factor, leading to a defect in the retinotectal axon pathfinding. As a result, a large fraction of homozygous bel mutants is achiasmatic. Achiasmatic bel mutants display ocular motor instabilities, both reserved optokinetic response (OKR) and spontaneous eye oscillations, and an unstable swimming behavior, described as looping. All these unstable behaviors have been linked to the underlying optic nerve projection defect. Looping has been investigated under different visual stimuli and shown to be vision dependent and contrast sensitive. In addition, looping correlates perfectly with reversed OKR and the spontaneous oscillations of the eyes. Hence, it has been hypothesized that looping is a compensatory response to the perception of self-motion induced by the spontaneous eye oscillations. However, both ocular and postural instabilities could also be caused by a yet unidentified vestibular deficit. Here, we performed a preliminary test of the vestibular function in achiasmatic bel larval mutants in order to clarify the potential role of a vestibular deficit in looping. We found that the vestibular ocular reflex (VOR) is normally directed in both bel mutants and wild types and therefore exclude the possibility that nystagmus and looping in reverse to the rotating optokinetic drum can be attributed to an underlying vestibular deficit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alternans of cardiac action potential duration (APD) is a well-known arrhythmogenic mechanism which results from dynamical instabilities. The propensity to alternans is classically investigated by examining APD restitution and by deriving APD restitution slopes as predictive markers. However, experiments have shown that such markers are not always accurate for the prediction of alternans. Using a mathematical ventricular cell model known to exhibit unstable dynamics of both membrane potential and Ca2+ cycling, we demonstrate that an accurate marker can be obtained by pacing at cycle lengths (CLs) varying randomly around a basic CL (BCL) and by evaluating the transfer function between the time series of CLs and APDs using an autoregressive-moving-average (ARMA) model. The first pole of this transfer function corresponds to the eigenvalue (λalt) of the dominant eigenmode of the cardiac system, which predicts that alternans occurs when λalt≤−1. For different BCLs, control values of λalt were obtained using eigenmode analysis and compared to the first pole of the transfer function estimated using ARMA model fitting in simulations of random pacing protocols. In all versions of the cell model, this pole provided an accurate estimation of λalt. Furthermore, during slow ramp decreases of BCL or simulated drug application, this approach predicted the onset of alternans by extrapolating the time course of the estimated λalt. In conclusion, stochastic pacing and ARMA model identification represents a novel approach to predict alternans without making any assumptions about its ionic mechanisms. It should therefore be applicable experimentally for any type of myocardial cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High altitude periodic breathing (PB) shares some common pathophysiologic aspects with sleep apnea, Cheyne-Stokes respiration and PB in heart failure patients. Methods that allow quantifying instabilities of respiratory control provide valuable insights in physiologic mechanisms and help to identify therapeutic targets. Under the hypothesis that high altitude PB appears even during physical activity and can be identified in comparison to visual analysis in conditions of low SNR, this study aims to identify PB by characterizing the respiratory pattern through the respiratory volume signal. A number of spectral parameters are extracted from the power spectral density (PSD) of the volume signal, derived from respiratory inductive plethysmography and evaluated through a linear discriminant analysis. A dataset of 34 healthy mountaineers ascending to Mt. Muztagh Ata, China (7,546 m) visually labeled as PB and non periodic breathing (nPB) is analyzed. All climbing periods within all the ascents are considered (total climbing periods: 371 nPB and 40 PB). The best crossvalidated result classifying PB and nPB is obtained with Pm (power of the modulation frequency band) and R (ratio between modulation and respiration power) with an accuracy of 80.3% and area under the receiver operating characteristic curve of 84.5%. Comparing the subjects from 1(st) and 2(nd) ascents (at the same altitudes but the latter more acclimatized) the effect of acclimatization is evaluated. SaO(2) and periodic breathing cycles significantly increased with acclimatization (p-value < 0.05). Higher Pm and higher respiratory frequencies are observed at lower SaO(2), through a significant negative correlation (p-value < 0.01). Higher Pm is observed at climbing periods visually labeled as PB with > 5 periodic breathing cycles through a significant positive correlation (p-value < 0.01). Our data demonstrate that quantification of the respiratory volume signal using spectral analysis is suitable to identify effects of hypobaric hypoxia on control of breathing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Control of breathing, heart rate, and body temperature are interdependent in infants, where instabilities in thermoregulation can contribute to apneas or even life-threatening events. Identifying abnormalities in thermoregulation is particularly important in the first 6 months of life, where autonomic regulation undergoes critical development. Fluctuations in body temperature have been shown to be sensitive to maturational stage as well as system failure in critically ill patients. We thus aimed to investigate the existence of fractal-like long-range correlations, indicative of temperature control, in night time rectal temperature (T(rec)) patterns in maturing infants. METHODOLOGY/PRINCIPAL FINDINGS: We measured T(rec) fluctuations in infants every 4 weeks from 4 to 20 weeks of age and before and after immunization. Long-range correlations in the temperature series were quantified by the correlation exponent, alpha using detrended fluctuation analysis. The effects of maturation, room temperature, and immunization on the strength of correlation were investigated. We found that T(rec) fluctuations exhibit fractal long-range correlations with a mean (SD) alpha of 1.51 (0.11), indicating that T(rec) is regulated in a highly correlated and hence deterministic manner. A significant increase in alpha with age from 1.42 (0.07) at 4 weeks to 1.58 (0.04) at 20 weeks reflects a change in long-range correlation behavior with maturation towards a smoother and more deterministic temperature regulation, potentially due to the decrease in surface area to body weight ratio in the maturing infant. alpha was not associated with mean room temperature or influenced by immunization CONCLUSIONS: This study shows that the quantification of long-range correlations using alpha derived from detrended fluctuation analysis is an observer-independent tool which can distinguish developmental stages of night time T(rec) pattern in young infants, reflective of maturation of the autonomic system. Detrended fluctuation analysis may prove useful for characterizing thermoregulation in premature and other infants at risk for life-threatening events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE Blood flow causes induced voltages via the magnetohydrodynamic (MHD) effect distorting electrograms (EGMs) made during magnetic resonance imaging. To investigate the MHD effect in this context MHD voltages occurring inside the human heart were simulated in an in vitro model system inside a 1.5 T MR system. METHODS The model was developed to produce MHD signals similar to those produced by intracardiac flow and to acquire them using standard clinical equipment. Additionally, a new approach to estimate MHD distortions on intracardiac electrograms is proposed based on the analytical calculation of the MHD signal from MR phase contrast data. RESULTS The recorded MHD signals were similar in magnitude to intracardiac signals that would be measured by an electrogram of the left ventricle. The dependency of MHD signals on magnetic field strength and electrode separation was well reflected by an analytical model. MHD signals reconstructed from MR flow data were in excellent agreement with the MHD signal measured by clinical equipment. CONCLUSION The in vitro model allows investigation of MHD effects on intracardiac electrograms. A phase contrast MR scan was successfully applied to characterize and estimate the MHD distortion on intracardiac signals allowing correction of these effects. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re D = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cometary coma is a unique phenomenon in the solar system being a planetary atmosphere influenced by little or no gravity. As a comet approaches the sun, the water vapor with some fraction of other gases sublimate, generating a cloud of gas, ice and other refractory materials (rocky and organic dust) ejected from the surface of the nucleus. Sublimating gas molecules undergo frequent collisions and photochemical processes in the near‐nucleus region. Owing to its negligible gravity, comets produce a large and highly variable extensive dusty coma with a size much larger than the characteristic size of the cometary nucleus. The Rosetta spacecraft is en route to comet 67P/Churyumov‐Gerasimenko for a rendezvous, landing, and extensive orbital phase beginning in 2014. Both, interpretation of measurements and safety consideration of the spacecraft require modeling of the comet’s dusty gas environment. In this work we present results of a numerical study of multispecies gaseous and electrically charged dust environment of comet Chyuryumov‐Gerasimenko. Both, gas and dust phases of the coma are simulated kinetically. Photolytic reactions are taken into account. Parameters of the ambient plasma as well as the distribution of electric/magnetic fields are obtained from an MHD simulation [1] of the coma connected to the solar wind. Trajectories of ions and electrically charged dust grains are simulated by accounting for the Lorentz force and the nucleus gravity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on magnetic field measurements made in the innermost coma of 67P/Churyumov-Gerasimenko in its low-activity state. Quasi-coherent, large-amplitude (δ B/B ~ 1), compressional magnetic field oscillations at ~ 40 mHz dominate the immediate plasma environment of the nucleus. This differs from previously studied cometary interaction regions where waves at the cometary ion gyro-frequencies are the main feature. Thus classical pickup-ion-driven instabilities are unable to explain the observations. We propose a cross-field current instability associated with newborn cometary ion currents as a possible source mechanism.