11 resultados para METHACRYLATE

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM Preparation of the lamina during osteo-odonto-keratoprosthesis (OOKP) design is complex, and its longevity and watertightness important. To date, only acrylic bone cements have been used for bonding the optical cylinder to the tooth dentine. Our aim was to evaluate different dental adhesives for OOKP preparation. METHODS Specimens of bovine teeth were produced by preparing 1.5-mm thick dentine slices with holes having a diameter of 3.5 mm. Each group (n=10 per group) was luted with either classic poly-(methyl methacrylate) (PMMA) bone cement, universal resin cement or glass ionomer cement. All specimens underwent force measurement using a uniaxial traction machine. RESULTS The highest mean force required to break the bond was measured for PMMA bone cement (128.2 N) followed by universal resin cement (127.9 N), with no statistically significant difference. Glass ionomer cement showed significantly lower force resistance (78.1 N). CONCLUSIONS Excellent bonding strength combined with easy application was found for universal resin cement, and thus, it is a potential alternative to acrylic bone cement in OOKP preparation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ethylene oxide) (PEO) has long been used as an additive in toothpaste, partly because it reduces biofilm formation on teeth. It does not, however, reduce the formation of dental calculus or support the remineralization of dental enamel or dentine. The present article describes the synthesis of new block copolymers on the basis of PEO and poly(3-sulfopropyl methacrylate) blocks using atom transfer radical polymerization. The polymers have very large molecular weights (over 10(6) g/mol) and are highly water-soluble. They delay the precipitation of calcium phosphate from aqueous solution but, upon precipitation, lead to relatively monodisperse hydroxyapatite (HAP) spheres. Moreover, the polymers inhibit the bacterial colonization of human enamel by Streptococcus gordonii, a pioneer bacterium in oral biofilm formation, in vitro. The formation of well-defined HAP spheres suggests that a polymer-induced liquid precursor phase could be involved in the precipitation process. Moreover, the inhibition of bacterial adhesion suggests that the polymers could be utilized in caries prevention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a detailed study on the preparation of compartmentalized cylindrical nanoparticles via a templated approach: the polybutadiene part of a linear polybutadiene-block-poly(2-vinyl pyridine)-block-poly(tert-butyl methacrylate) block terpolymer, B420V280T790, having a bulk microstructure with PB cylinders covered by a P2VP double helix and embedded in a PtBMA matrix was selectively crosslinked. Subsequent sonication-assisted dissolution and chemical modifications such as quaternization (P2VP to P2VPq) and ester hydrolysis (PtBMA to poly(sodium methacrylate), PMANa) resulted in core-crosslinked cylinders soluble in organic and aqueous media. Different amounts of crosslinker and the influence of the sonication treatment on size and shape of the cylindrical aggregates were investigated. The cylinders always exhibit a compartmentalized corona. Under certain conditions, in particular quaternization of P2VP in mixtures of THF and MeOH, the helical arrangement of the P2VPq shell could be preserved even in solution, whereas in most other cases randomly distributed P2VP/P2VPq patches were observed. In aqueous solution at high pH, intramicellar interpolyelectrolyte complex (im-IPEC) formation occurred between the positively charged P2VPq shell and the negatively charged PMANa corona. We further show that different noble metal nanoparticles can be generated either selectively within the im-IPEC compartments (Pd) or randomly distributed among shell and corona of the cylinders (Au and Pt).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: This investigation describes experimental tests of the biomechanical features of a new resorbable bone adhesive based on methacrylate-terminated oligolactides enhanced with osteoconductive β-tricalcium phosphate. Material and Methods: 51 New Zealand white rabbits were randomised to an adhesive group (n = 29) and a control group (n = 22). An extra-articular bone cylinder was taken from the proximal tibia, two stripes of adhesive were applied and the cylinders were replanted. After 10 and 21 days, 3 and 12 months tibial specimens were harvested and the cylinder pull-out test was performed with a servo-hydraulic machine. Additionally the pull-out force was evaluated with the bone-equivalent Ebazell® after 5, 10 and 360 minutes in 14 specimens each. Results: Average pull-out forces in the adhesive group were 28 N after 10 days (control: 57 N), 155 N after 21 days (216 N), 184 N after 3 months (197 N) and 205 N after 12 months (185 N). Investigations with Ebazell® showed almost identical pull-out forces after 5 min, 15 min and 360 min. Adhesive forces were as high as 125 N/cm2 of adhesive surface and more than 1200 N/g of adhesive mass. Conclusions: The adhesive investigated here has a very good primary adhesive power, compared to the literature data, achieved after only 5 minutes. Even in moist surroundings the adhesive capacity remains sufficient. The adhesive has to prove its resorptive properties in further investigations and in first line its medium-term and long-lasting biocompatibility. Furthermore, biomechanical features will have to be compared to those of conventional fixation techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate implant accuracy and cosmetic outcome of a new intraoperative patient-specific cranioplasty method after convexity meningioma resection. METHODS: The patient's own bone flap served as a template to mold a negative form with the use of polymethyl methacrylate (PMMA). The area of bone invasion was determined and broadly excised under white light illumination with a safety margin of at least 1 cm. The definitive replica was cast within the remaining bone flap frame and the imprint. Clinical and radiologic follow-up examinations were performed 3 months after surgery. RESULTS: Four women and two men (mean age 51.4 years ± 12.8) underwent reconstruction of bone flap defects after meningioma resection. Mean duration of intraoperative reconstruction of the partial bone flap defects was 19 minutes ± 4 (range 14-24 minutes). Implant sizes ranged from 17-35 cm(2) (mean size 22 cm(2) ± 8). Radiologic and clinical follow-up examinations revealed excellent implant alignment and favorable cosmesis (visual analogue scale for cosmesis [VASC] = 97 ± 5) in all patients. CONCLUSIONS: Patient-specific reconstruction of partial bone flap defects after convexity meningioma resection using the presented intraoperative PMMA cast method resulted in excellent bony alignment and a favorable cosmetic outcome. Relatively low costs and minimized operation time for adjustment and insertion of the cranioplasty implant justify use of this method in small bony defects as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The search for an effective treatment for septic arthritis is ongoing. Current therapies are expensive since they require repeated joint lavage and long term antibiotic treatment. Local application of antimicrobial drugs is advantageous because high concentrations can be attained at the infection site, although repeated injections increase the risk of superinfection of the joint. Thus, slow release formulations, which have the advantage of local treatment yet single application of the drug, are appealing. Antibiotics used in slow release formulations are selected for tissue compatibility, an appropriate antibacterial spectrum, and stability both during the mixing procedure and within the carrier during the release period. Ideally the carriers should be bioresorbable. Promising reports on the clinical use of poly(methyl methacrylate) (PMMA) mixed with several different antibiotics, and of collagen sponges impregnated with gentamicin, should encourage the search for formulations optimally adapted to veterinary medical requirements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cranioplasty is a common neurosurgical procedure. Free-hand molding of polymethyl methacrylate (PMMA) cement into complex three-dimensional shapes is often time-consuming and may result in disappointing cosmetic outcomes. Computer-assisted patient-specific implants address these disadvantages but are associated with long production times and high costs. In this study, we evaluated the clinical, radiological, and cosmetic outcomes of a time-saving and inexpensive intraoperative method to mold custom-made implants for immediate single-stage or delayed cranioplasty. Data were collected from patients in whom cranioplasty became necessary after removal of bone flaps affected by intracranial infection, tumor invasion, or trauma. A PMMA replica was cast between a negative form of the patient's own bone flap and the original bone flap with exactly the same shape, thickness, and dimensions. Clinical and radiological follow-up was performed 2 months post-surgery. Patient satisfaction (Odom criteria) and cosmesis (visual analogue scale for cosmesis) were evaluated 1 to 3 years after cranioplasty. Twenty-seven patients underwent intraoperative template-molded patient-specific cranioplasty with PMMA. The indications for cranioplasty included bone flap infection (56%, n = 15), calvarian tumor resection (37%, n = 10), and defect after trauma (7%, n = 2). The mean duration of the molding procedure was 19 ± 7 min. Excellent radiological implant alignment was achieved in 94% of the cases. All (n = 23) but one patient rated the cosmetic outcome (mean 1.4 years after cranioplasty) as excellent (70%, n = 16) or good (26%, n = 6). Intraoperative cast-molded reconstructive cranioplasty is a feasible, accurate, fast, and cost-efficient technique that results in excellent cosmetic outcomes, even with large and complex skull defects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(methyl methacrylate) (PMMA) is by far the most frequently used bone substitute material for vertebroplasty. However, there are serious complications, such as cement leakage and an increased fracture rate of the adjacent vertebral bodies. The latter may be related to the mechanical properties of the augmented segment within the osteoporotic spine. A possible counter-measure is prophylactic augmentation at additional levels, but this aggravates the risk for the patient. Introduction of pores is a possible method to reduce the inherent high stiffness of PMMA. This study investigates the effect of porosity on the mechanical properties of PMMA bone cement. Different fractions of a highly viscous liquid were mixed into the PMMA during preparation. An open-porous material with adjustable mechanical properties resulted after removal of the aqueous phase. Different radiopacifiers were admixed to investigate their suitability for vertebroplasty. The final material was characterized mechanically by compressive testing, microscopically and radiologically. In addition, the monomer release subsequent to hardening was measured by means of gas chromatography. The Young's modulus in compression could be varied between 2800 +/- 70 MPa and 120 +/- 150 MPa, and the compression ultimate strength between 170 +/- 5 MPa and 8 +/- 9 MPa for aqueous fractions ranging between 0 and 50% of volume. Only a slight decrease of the Young's modulus and small changes of ultimate strength were found when the mixing time was increased. An organic hydrophilic and lipophilic radiopacifier led to a higher Young's modulus of the porous material; however, the ultimate strength was not significantly affected by adding different radiopacifiers to the porous cement. The radiopacity was lost after washing the aqueous phase out of the pores. No separation occurred between the aqueous and the PMMA phase during injection into an open porous ceramic material. The monomer released was found to increase for increasing aqueous fractions, but remained comparable in magnitude to standard PMMA. This study demonstrates that a conventional PMMA can be modified to obtain a range of mechanical properties, including those of osteoporotic bone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intraoperative molding of polymethyl-methacrylate into complex three-dimensional shapes with correct thickness is often a time-consuming process and may lead to unsatisfying cosmetical results. This article describes an intraoperative technique to assemble a polymethyl-methacrylate implant as a replica of the patient's bone flap. This approach provides a fast and inexpensive alternative technique with good cosmetic outcome. The technique is feasible and can be applied in early and delayed cranioplasty procedures. In selected patients, immediate single-stage reconstruction avoids a second operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Measures to reduce radiation exposure and injected iodine mass are becoming more important with the widespread and often repetitive use of pulmonary CT angiography (CTA) in patients with suspected pulmonary embolism. In this retrospective study, we analyzed the capability of 2 low-kilovoltage CTA-protocols to achieve these goals. MATERIALS AND METHODS: Ninety patients weighing less than 100 kg were examined by a pulmonary CTA protocol using either 100 kVp (group A) or 80 kVp (group B). Volume and flow rate of contrast medium were reduced in group B (75 mL at 3 mL/s) compared with group A (100 mL at 4 mL/s). Attenuation was measured in the central and peripheral pulmonary arteries, and the contrast-to-noise ratios (CNR) were calculated. Entrance skin dose was estimated by measuring the surface dose in an ovoid-cylindrical polymethyl methacrylate chest phantom with 2 various dimensions corresponding to the range of chest diameters in our patients. Quantitative image parameters, estimated effective dose, and skin dose in both groups were compared by the t test. Arterial enhancement, noise, and overall quality were independently assessed by 3 radiologists, and results were compared between the groups using nonparametric tests. RESULTS: Mean attenuation in the pulmonary arteries in group B (427.6 +/- 116 HU) was significantly higher than in group A (342.1 +/- 87.7 HU; P < 0.001), whereas CNR showed no difference (group A, 20.6 +/- 7.3 and group B, 22.2 +/- 7.1; P = 0.302). Effective dose was lower by more than 40% with 80 kVp (1.68 +/- 0.23 mSv) compared with 100 kVp (2.87 +/- 0.88 mSv) (P < 0.001). Surface dose was significantly lower at 80 kVp compared with 100 kVp at both phantom dimensions (2.75 vs. 3.22 mGy; P = 0.027 and 2.22 vs. 2.73 mGy; P = 0.005, respectively). Image quality did not differ significantly between the groups (P = 0.151). CONCLUSIONS: Using 80 kVp in pulmonary CTA permits reduced patient exposure by 40% and CM volume by 25% compared with 100 kVp without deterioration of image quality in patients weighing less than 100 kg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent clinical trials have reported favorable early results for transpedicular vertebral cement reinforcement of osteoporotic vertebral insufficiencies. There is, however, a lack of basic data on the application, safety and biomechanical efficacy of materials such as polymethyl-methacrylate (PMMA) and calciumphospate (CaP) cements. The present study analyzed 33 vertebral pairs from five human cadaver spines. Thirty-nine vertebrae were osteoporotic (bone mineral density < 0.75 g/cm2), 27 showed nearly normal values. The cranial vertebra of each pair was augmented with either PMMA (Palacos E-Flow) or experimental brushite cement (EBC), with the caudal vertebra as a control. PMMA and EBC were easy to inject, and vertebral fillings of 20-50% were achieved. The maximal possible filling was inversely correlated to the bone mineral density (BMD) values. Cement extrusion into the spinal canal was observed in 12% of cases. All specimens were subjected to axial compression tests in a displacement-controlled mode. From load-displacement curves, the stiffness, S, and the maximal force before failure, Fmax, were determined. Compared with the native control vertebrae, a statistically significant increase in vertebral stiffness and Fmax was observed by the augmentation. With PMMA the stiffness increased by 174% (P = 0.018) and Fmax by 195% (P = 0.001); the corresponding augmentation with EBC was 120% (P = 0.03) and 113% (P = 0.002). The lower the initial BMD, the more pronounced was the augmentation effect. Both PMMA and EBC augmentation reliably and significantly raised the stiffness and maximal tolerable force until failure in osteoporotic vertebral bodies. In non-porotic specimens, no significant increase was achieved.