21 resultados para METAL COORDINATION POLYMERS

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A molecular, porous crystalline material constructed from neutral helical coordination polymers incorporating manganese(II) ions and two types of bridging ligands, namely the deprotonated form of 2-hydroxy-5-methoxy-3-nitrobenzaldehyde (HL) and isobutyrate (iB−), has been obtained and structurally characterized. Structural analysis reveals that within the coordination polymer each benzaldehyde derivative ligates two manganese ions in 6-membered chelating rings, and the isobutyrate ligands cooperatively chelate either two or three manganese ions. The solid state assembly of the resulting polymeric chains of formula [Mn4(L)2(iB)6]n (1), described in the polar space group R3c, is associated with tubular channels occupied by MeCN solvent molecules (1·xMeCN; x ≤ 9). TGA profiles and PXRD measurements demonstrate that the crystallinity of the solid remains intact in its fully desolvated form, and its stability and crystallinity are ensured up to a temperature of 190 °C. Gas adsorption properties of desolvated crystals were probed, but no remarkable sorption capacity of N2 and only a limited one for CO2 could be observed. Magnetic susceptibility data reveal an antiferromagnetic type of coupling between adjacent manganese(II) ions along the helical chains with energy parameters J1 = −5.9(6) cm−1 and J2 = −1.8(9) cm−1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New coordination polymers [M(Pht)(4-MeIm)2(H2O)]n (M=Co (1), Cu (2); Pht2−=dianion of o-phthalic acid; 4-MeIm=4-methylimidazole) have been synthesized and characterized by IR spectroscopy, X-ray crystallography, thermogravimetric analysis and magnetic measurements. The crystal structures of 1 and 2 are isostructural and consist of [M(4-MeIm)2(H2O)] building units linked in infinite 1D helical chains by 1,6-bridging phthalate ions which also act as chelating ligands through two O atoms from one carboxylate group in the case of 1. In complex 1, each Co(II) atom adopts a distorted octahedral N2O4 geometry being coordinated by two N atoms from two 4-MeIm, three O atoms of two phthalate residues and one O atom of a water molecule, whereas the square-pyramidal N2O3 coordination of the Cu(II) atom in 2 includes two N atoms of N-containing ligands, two O atoms of two carboxylate groups from different Pht, and a water molecule. An additional strong O–H⋯O hydrogen bond between a carboxylate group of the phthalate ligand and a coordinated water molecule join the 1D helical chains to form a 2D network in both compounds. The thermal dependences of the magnetic susceptibilities of the polymeric helical Co(II) chain compound 1 were simulated within the temperature range 20–300 K as a single ion case, whereas for the Cu(II) compound 2, the simulations between 25 and 300 K, were made for a linear chain using the Bonner–Fisher approximation. Modelling the experimental data of compound 1 with MAGPACK resulted in: g=2.6, |D|=62 cm−1. Calculations using the Bonner–Fisher approximation gave the following result for compound 2: g=2.18, J=–0.4 cm−1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By reacting 4,4′-bipyridine (bpy) with selected trinuclear triangular CuII complexes, [Cu3(μ3-OH)(μ-pz)3(RCOO)2(LL′)] [pz = pyrazolate anion; R = CH3, CH3CH2, CH2═CH, CH2═C(CH3); L, L′ = Hpz, H2O, MeOH] in MeOH, the substitution of monotopic ligands by ditopic bpy was observed. Depending on the stoichiometric reaction ratios, different compounds were isolated and structurally characterized. One- and two-dimensional coordination polymers (CPs), as well as two hexanuclear CuII clusters were identified. One of the hexanuclear clusters self-assembles into a supramolecular three-dimensional structure, and its crystal packing shows the presence of two intersecting channels, one of which is almost completely occupied by guest bpy, while in the second one guest water molecules are present. This compound also shows a reversible, thermally induced, single-crystal-to-single-crystal transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reactions of 4,4′-bipyridine with selected trinuclear triangular copper(II) complexes, [Cu3(μ3-OH)(μ-pz)3(RCOO)2Lx], [pz = pyrazolate anion, R = CH3(CH2)n (2 ≤ n ≤ 5); L = H2O, MeOH, EtOH] yielded a series of 1D coordination polymers (CPs) based on the repetition of [Cu3(μ3-OH)(μ-pz)3] secondary building units joined by bipyridine. The CPs were characterized by conventional analytical methods (elemental analyses, ESI-MS, IR spectra) and single crystal XRD determinations. An unprecedented 1D CP, generated through the bipyridine bridging hexanuclear copper clusters moieties, two 1D CPs presenting structural analogies, and two monodimensional tapes having almost exactly superimposable structures, were obtained. In one case, the crystal packing makes evident the presence of small, not-connected pores, accounting for ca. 6% of free cell volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new coordination polymers [M(Pht)(1-MeIm)2]n (where M=Cu (1), Zn (2), Co (3); Pht2−=dianion of o-phthalic acid; 1-MeIm=1-methylimidazole) and two compounds [M(1-MeIm)6](HPht)2 · 2H2O (M=Co (4), Ni (5)) have been synthesized and characterized by X-ray crystallography. The structures of 1–3 (2 is isostructural to 3) consist of [M(1-MeIm)2] building units connected by 1,6-bridging phthalate ions to form infinite chains. In complex 1, each copper(II) center adopts a square coordination mode of N2O2 type by two O atoms from different phthalate ions and two N atoms of 1-MeIm, whereas in 3 two independent metal atoms are tetrahedrally (N2O2) coordinated to a pair of Pht ligands and a pair of 1-MeIm molecules. There are only van der Waals interactions between the chains in 1, while the three-dimensional network in 3 is assembled by C–H⋯O contacts. In contrast to polymers 1–3 the structures of 4 and 5 (complexes are also isostructural) are made up of the [M(1-MeIm)6]2+ cation, two hydrogen phthalate anions (HPht−) and two H2O solvate molecules. The coordination around each metal(II) atom is octahedral with six nitrogen atoms of 1-MeIm. Extended hydrogen bonding networks embracing the solvate water molecules and a phthalate residue as well as the weak C–H⋯O interactions stabilize the three-dimensional structures. Magnetic studies clearly show that the magnetic ions do not interact with each other. Furthermore, in compound 4 we have another example of a highly anisotropic Co2+ ion with a rhombic g-tensor and large zero-field-splitting. The complexes were also characterized by IR and 1H NMR spectroscopy, thermogravimetric analysis, and all data are discussed in the terms of known structures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bistriazoles, 1,3-bis(1,2,4-triazol-4-yl)propane (tr2pr) and 1,3-bis(1,2,4-triazol-4-yl)adamantane (tr2ad), were examined in combination with the rigid tetratopic 1,3,5,7-adamantanetetracarboxylic acid (H4-adtc) platform for the construction of neutral heteroleptic copper(II) metal−organic frameworks. Two coordination polymers, [{Cu4(OH)2(H2O)2}{Cu4(OH)2}(tr2pr)2(H-adtc)4]·2H2O (1) and [Cu4(OH)2(tr2ad)2(H-adtc)2(H2O)2]·3H2O (2), were synthesized and structurally characterized. In complexes 1 and 2, the N1,N2-1,2,4-triazolyl (tr) and μ3-OH− groups serve as complementary bridges between adjacent metal centers supporting the tetranuclear dihydroxo clusters. The structure of 1 represents a unique association of two different kinds of centrosymmetrical {Cu4(OH)2} units in a tight 3D framework, while in compound 2, another configuration type of acentric tetranuclear metal clusters is organized in a layered 3,6-hexagonal motif. In both cases, the {Cu4(OH)2} secondary building block and trideprotonated carboxylate H-adtc3− can be viewed as covalently bound six- and three-connected nodes that define the net topology. The tr ligands, showing μ3- or μ4-binding patterns, introduce additional integrating links between the neighboring {Cu4(OH)2} fragments. A variable-temperature magnetic susceptibility study of 2 demonstrates strong antiferromagnetic intracluster coupling (J1 = −109 cm−1 and J2 = −21 cm−1), which combines for the bulk phase with a weak antiferromagnetic intercluster interaction (zj = −2.5 cm−1).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The accurate electron density distribution and magnetic properties of two metal-organic polymeric magnets, the quasi-one-dimensional (1D) Cu(pyz)(NO3)2 and the quasi-two-dimensional (2D) [Cu(pyz)2(NO3)]NO3·H2O, have been investigated by high-resolution single-crystal X-ray diffraction and density functional theory calculations on the whole periodic systems and on selected fragments. Topological analyses, based on quantum theory of atoms in molecules, enabled the characterization of possible magnetic exchange pathways and the establishment of relationships between the electron (charge and spin) densities and the exchange-coupling constants. In both compounds, the experimentally observed antiferromagnetic coupling can be quantitatively explained by the Cu-Cu superexchange pathway mediated by the pyrazine bridging ligands, via a σ-type interaction. From topological analyses of experimental charge-density data, we show for the first time that the pyrazine tilt angle does not play a role in determining the strength of the magnetic interaction. Taken in combination with molecular orbital analysis and spin density calculations, we find a synergistic relationship between spin delocalization and spin polarization mechanisms and that both determine the bulk magnetic behavior of these Cu(II)-pyz coordination polymers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In analogy to the [M(II)(bpy)(3)](2+) cations, where M(II) is a divalent transition-metal and bpy is 2,2'-bipyridine, the tris-chelated [M(III)(bpy)(3)](3+) cations, where M(III) is Cr(III) or Co(III), induce the crystallization of chiral, anionic three-dimensional (3D) coordination polymers of oxalate-bridged (&mgr;-ox) metal complexes with stoichiometries [M(II)(2)(ox)(3)](n)()(2)(n)()(-) or [M(I)M(III)(ox)(3)](n)()(2)(n)()(-). The tripositive charge is partially compensated by inclusion of additional complex anions like ClO(4)(-), BF(4)(-), or PF(6)(-) which are encapsulated in cubic shaped cavities formed by the bipyridine ligands of the cations. Thus, an elaborate structure of cationic and anionic species within a polymeric anionic network is realized. The compounds isolated and structurally characterized include [Cr(III)(bpy)(3)][ClO(4)] [NaCr(III)(ox)(3)] (1), [Cr(III)(bpy)(3)][ClO(4)][Mn(II)(2)(ox)(3)] (2), [Cr(III)(bpy)(3)][BF(4)] [Mn(II)(2)(ox)(3)] (3), [Co(III)(bpy)(3)][PF(6)][NaCr(III)(ox)(3)] (4). Crystal data: 1, cubic, P2(1)3, a = 15.523(4) Å, Z = 4; 2, cubic, P4(1)32, a = 15.564(3) Å, Z = 4; 3, cubic, P4(1)32, a = 15.553(3) Å, Z = 4; 4, cubic, P2(1)3, a = 15.515(3) Å, Z = 4. Furthermore, it seemed likely that 1,2-dithiooxalate (dto) could act as an alternative to the oxalate bridging ligand, and as a result the compound [Ni(II)(phen)(3)][NaCo(III)(dto)(3)].C(3)H(6)O (5) has successfully been isolated and structurally characterized. Crystal data: 5, orthorhombic, P2(1)2(1)2(1), a = 16.238(4) Å, b = 16.225(4) Å, c = 18.371(5) Å, Z = 4. In addition, the photophysical properties of compound 1 have been investigated in detail. In single crystal absorption spectra of [Cr(III)(bpy)(3)][ClO(4)][NaCr(III)(ox)(3)] (1), the spin-flip transitions of both the [Cr(bpy)(3)](3+) and the [Cr(ox)(3)](3)(-) chromophores are observed and can be clearly distinguished. Irradiating into the spin-allowed (4)A(2) --> (4)T(2) absorption band of [Cr(ox)(3)](3)(-) results in intense luminescence from the (2)E state of [Cr(bpy)(3)](3+) as a result of rapid energy transfer processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The general goal of this thesis is correlating observable properties of organic and metal-organic materials with their ground-state electron density distribution. In a long-term view, we expect to develop empirical or semi-empirical approaches to predict materials properties from the electron density of their building blocks, thus allowing to rationally engineering molecular materials from their constituent subunits, such as their functional groups. In particular, we have focused on linear optical properties of naturally occurring amino acids and their organic and metal-organic derivatives, and on magnetic properties of metal-organic frameworks. For analysing the optical properties and the magnetic behaviour of the molecular or sub-molecular building blocks in materials, we mostly used the more traditional QTAIM partitioning scheme of the molecular or crystalline electron densities, however, we have also investigated a new approach, namely, X-ray Constrained Extremely Localized Molecular Orbitals (XC-ELMO), that can be used in future to extracted the electron densities of crystal subunits. With the purpose of rationally engineering linear optical materials, we have calculated atomic and functional group polarizabilities of amino acid molecules, their hydrogen-bonded aggregates and their metal-organic frameworks. This has enabled the identification of the most efficient functional groups, able to build-up larger electric susceptibilities in crystals, as well as the quantification of the role played by intermolecular interactions and coordinative bonds on modifying the polarizability of the isolated building blocks. Furthermore, we analysed the dependence of the polarizabilities on the one-electron basis set and the many-electron Hamiltonian. This is useful for selecting the most efficient level of theory to estimate susceptibilities of molecular-based materials. With the purpose of rationally design molecular magnetic materials, we have investigated the electron density distributions and the magnetism of two copper(II) pyrazine nitrate metal-organic polymers. High-resolution X-ray diffraction and DFT calculations were used to characterize the magnetic exchange pathways and to establish relationships between the electron densities and the exchange-coupling constants. Moreover, molecular orbital and spin-density analyses were employed to understand the role of different magnetic exchange mechanisms in determining the bulk magnetic behaviour of these materials. As anticipated, we have finally investigated a modified version of the X-ray constrained wavefunction technique, XC-ELMOs, that is not only a useful tool for determination and analysis of experimental electron densities, but also enables one to derive transferable molecular orbitals strictly localized on atoms, bonds or functional groups. In future, we expect to use XC-ELMOs to predict materials properties of large systems, currently challenging to calculate from first-principles, such as macromolecules or polymers. Here, we point out advantages, needs and pitfalls of the technique. This work fulfils, at least partially, the prerequisites to understand materials properties of organic and metal-organic materials from the perspective of the electron density distribution of their building blocks. Empirical or semi-empirical evaluation of optical or magnetic properties from a preconceived assembling of building blocks could be extremely important for rationally design new materials, a field where accurate but expensive first-principles calculations are generally not used. This research could impact the community in the fields of crystal engineering, supramolecular chemistry and, of course, electron density analysis.