4 resultados para METABOLIC NETWORKS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Background Obligate endoparasites often lack particular metabolic pathways as compared to free-living organisms. This phenomenon comprises anabolic as well as catabolic reactions. Presumably, the corresponding enzymes were lost in adaptation to parasitism. Here we compare the predicted core metabolic graphs of obligate endoparasites and non-parasites (free living organisms and facultative parasites) in order to analyze how the parasites' metabolic networks shrunk in the course of evolution. Results Core metabolic graphs comprising biochemical reactions present in the presumed ancestor of parasites and non-parasites were reconstructed from the Kyoto Encyclopedia of Genes and Genomes. While the parasites' networks had fewer nodes (metabolites) and edges (reactions), other parameters such as average connectivity, network diameter and number of isolated edges were similar in parasites and non-parasites. The parasites' networks contained a higher percentage of ATP-consuming reactions and a lower percentage of NAD-requiring reactions. Control networks, shrunk to the size of the parasites' by random deletion of edges, were scale-free but exhibited smaller diameters and more isolated edges. Conclusions The parasites' networks were smaller than those of the non-parasites regarding number of nodes or edges, but not regarding network diameters. Network integrity but not scale-freeness has acted as a selective principle during the evolutionary reduction of parasite metabolism. ATP-requiring reactions in particular have been retained in the parasites' core metabolism while NADH- or NADPH-requiring reactions were lost preferentially.
Resumo:
BACKGROUND: Despite recent algorithmic and conceptual progress, the stoichiometric network analysis of large metabolic models remains a computationally challenging problem. RESULTS: SNA is a interactive, high performance toolbox for analysing the possible steady state behaviour of metabolic networks by computing the generating and elementary vectors of their flux and conversions cones. It also supports analysing the steady states by linear programming. The toolbox is implemented mainly in Mathematica and returns numerically exact results. It is available under an open source license from: http://bioinformatics.org/project/?group_id=546. CONCLUSION: Thanks to its performance and modular design, SNA is demonstrably useful in analysing genome scale metabolic networks. Further, the integration into Mathematica provides a very flexible environment for the subsequent analysis and interpretation of the results.
Resumo:
The concept of elementary vector is generalised to the case where the steady-state space of the metabolic network is not a flux cone but is a general polyhedron due to further inhomogeneous constraints on the flows through some of the reactions. On one hand, this allows to selectively enumerate elementary modes which satisfy certain optimality criteria and this can yield a large computational gain compared with full enumeration. On the other hand, in contrast to the single optimum found by executing a linear program, this enables a comprehensive description of the set of alternate optima often encountered in flux balance analysis. The concepts are illustrated on a metabolic network model of human cardiac mitochondria.
Resumo:
The metabolic network of a cell represents the catabolic and anabolic reactions that interconvert small molecules (metabolites) through the activity of enzymes, transporters and non-catalyzed chemical reactions. Our understanding of individual metabolic networks is increasing as we learn more about the enzymes that are active in particular cells under particular conditions and as technologies advance to allow detailed measurements of the cellular metabolome. Metabolic network databases are of increasing importance in allowing us to contextualise data sets emerging from transcriptomic, proteomic and metabolomic experiments. Here we present a dynamic database, TrypanoCyc (http://www.metexplore.fr/trypanocyc/), which describes the generic and condition-specific metabolic network of Trypanosoma brucei, a parasitic protozoan responsible for human and animal African trypanosomiasis. In addition to enabling navigation through the BioCyc-based TrypanoCyc interface, we have also implemented a network-based representation of the information through MetExplore, yielding a novel environment in which to visualise the metabolism of this important parasite.