11 resultados para MEP

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term disturbance of the calcium homeostasis of motor endplates (MEPs) causes necrosis of muscle fibers. The onset of morphological changes in response to this disturbance, particularly in relation to the fiber type, is presently unknown. Omohyoid muscles of mice were incubated for 1-30 minutes in 0.1 mM carbachol, an acetylcholine agonist that causes an inward calcium current. In these muscles, the structural changes of the sarcomeres and the MEP sarcoplasm were evaluated at the light- and electron-microscopic level. Predominantly in type I fibers, carbachol incubation resulted in strong contractures of the sarcomeres underlying the MEPs. Owing to these contractures, the usual beret-like form of the MEP-associated sarcoplasm was deformed into a mushroom-like body. Consequently, the squeezed MEPs partially overlapped the adjacent muscle fiber segments. There are no signs of contractures below the MEPs if muscles were incubated in carbachol in calcium-free Tyrode's solution. Carbachol induced inward calcium current and produced fiber-type-specific contractures. This finding points to differences in the handling of calcium in MEPs. Possible mechanisms for these fiber-type-specific differences caused by carbachol-induced calcium entry are assessed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To compare the individual latency distributions of motor evoked potentials (MEP) in patients with multiple sclerosis (MS) to the previously reported results in healthy subjects (Firmin et al., 2011). METHODS: We applied the previously reported method to measure the distribution of MEP latencies to 16 patients with MS. The method is based on transcranial magnetic stimulation and consists of a combination of the triple stimulation technique with a method originally developed to measure conduction velocity distributions in peripheral nerves. RESULTS: MEP latency distributions in MS typically showed two peaks. The individual MEP latency distributions were significantly wider in patients with MS than in healthy subjects. The mean triple stimulation delay extension at the 75% quantile, a proxy for MEP latency distribution width, was 7.3ms in healthy subjects and 10.7ms in patients with MS. CONCLUSIONS: In patients with MS, slow portions of the central motor pathway contribute more to the MEP than in healthy subjects. The bimodal distribution found in healthy subjects is preserved in MS. SIGNIFICANCE: Our method to measure the distribution of MEP latencies is suitable to detect alterations in the relative contribution of corticospinal tract portions with long MEP latencies to motor conduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mapping and monitoring are believed to provide an early warning sign to determine when to stop tumor removal to avoid mechanical damage to the corticospinal tract (CST). The objective of this study was to systematically compare subcortical monopolar stimulation thresholds (1-20 mA) with direct cortical stimulation (DCS)-motor evoked potential (MEP) monitoring signal abnormalities and to correlate both with new postoperative motor deficits. The authors sought to define a mapping threshold and DCS-MEP monitoring signal changes indicating a minimal safe distance from the CST.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study is to develop a new simple method for analyzing one-dimensional transcranial magnetic stimulation (TMS) mapping studies in humans. Motor evoked potentials (MEP) were recorded from the abductor pollicis brevis (APB) muscle during stimulation at nine different positions on the scalp along a line passing through the APB hot spot and the vertex. Non-linear curve fitting according to the Levenberg-Marquardt algorithm was performed on the averaged amplitude values obtained at all points to find the best-fitting symmetrical and asymmetrical peak functions. Several peak functions could be fitted to the experimental data. Across all subjects, a symmetric, bell-shaped curve, the complementary error function (erfc) gave the best results. This function is characterized by three parameters giving its amplitude, position, and width. None of the mathematical functions tested with less or more than three parameters fitted better. The amplitude and position parameters of the erfc were highly correlated with the amplitude at the hot spot and with the location of the center of gravity of the TMS curve. In conclusion, non-linear curve fitting is an accurate method for the mathematical characterization of one-dimensional TMS curves. This is the first method that provides information on amplitude, position and width simultaneously.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: In transcranial magnetic stimulation (TMS) of the motor cortex, the optimal orientation of the coil on the scalp is dependent on the muscle under investigation, but not yet known for facial muscles. METHODS: Using a figure-of-eight coil, we compared TMS induced motor evoked potentials (MEPs) from eight different coil orientations when recording from ipsi- and contralateral nasalis muscle. RESULTS: The MEPs from nasalis muscle revealed three components: The major ipsi- and contra-lateral middle latency responses of approximately 10 ms onset latency proved entirely dependent on voluntary pre-innervation. They were most easily obtained from a coil orientation with posterior inducing current direction, and in this respect resembled the intrinsic hand rather than the masseter muscles. Early short duration responses of around 6 ms onset latency were best elicited with an antero-lateral current direction and not pre-innervation dependent, and therefore most probably due to stimulation of the nerve roots. Late responses (>18 ms) could inconsistently be elicited with posterior coil orientations in pre-innervated condition. CONCLUSIONS: By using the appropriate coil orientation and both conditions relaxed and pre-innervated, cortically evoked MEP responses from nasalis muscle can reliably be separated from peripheral and reflex components and also from cross talk of masseter muscle activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Motor evoked potentials (MEPs) after transcranial magnetic brain stimulation (TMS) are smaller than CMAPs after peripheral nerve stimulation, because desynchronization of the TMS-induced motor neurone discharges occurs (i.e. MEP desynchronization). This desynchronization effect can be eliminated by use of the triple stimulation technique (TST; Brain 121 (1998) 437). The objective of this paper is to study the effect of discharge desynchronization on MEPs by comparing the size of MEP and TST responses. METHODS: MEP and TST responses were obtained in 10 healthy subjects during isometric contractions of the abductor digiti minimi, during voluntary background contractions between 0% and 20% of maximal force, and using 3 different stimulus intensities. Additional data from other normals and from multiple sclerosis (MS) patients were obtained from previous studies. RESULTS: MEPs were smaller than TST responses in all subjects and under all stimulating conditions, confirming the marked influence of desynchronization on MEPs. There was a linear relation between the amplitudes of MEPs vs. TST responses, independent of the degree of voluntary contraction and stimulus intensity. The slope of the regression equation was 0.66 on average, indicating that desynchronization reduced the MEP amplitude on average by one third, with marked inter-individual variations. A similar average proportion was found in MS patients. CONCLUSIONS: The MEP size reduction induced by desynchronization is not influenced by the intensity of TMS and by the level of facilitatory voluntary background contractions. It is similar in healthy subjects and in MS patients, in whom increased desynchronization of central conduction was previously suggested to occur. Thus, the MEP size reduction observed may not parallel the actual amount of desynchronization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: We compared motor and movement thresholds to transcranial magnetic stimulation (TMS) in healthy subjects and investigated the effect of different coil positions on thresholds and MEP (motor-evoked potential) amplitudes. METHODS: The abductor pollicis brevis (APB) 'hot spot' and a standard scalp position were stimulated. APB resting motor threshold (APB MEP-MT) defined by the '5/10' electrophysiological method was compared with movement threshold (MOV-MT), defined by visualization of movements. Additionally, APB MEP-MTs were evaluated with the '3/6 method,' and MEPs were recorded at a stimulation intensity of 120% APB MEP-MT at each position. RESULTS: APB MEP-MTs were significantly lower by stimulation of the 'hot spot' than of the standard position, and significantly lower than MOV-MTs (n=15). There were no significant differences between the '3/6' and the '5/10' methods, or between APB MEP amplitudes by stimulating each position at 120% APB MEP-MT. CONCLUSIONS: Coil position and electrophysiological monitoring influenced motor threshold determinations. Performing 6 instead of 10 trials did not produce different threshold measurements. Adjustment of intensity according to APB MEP-MT at the stimulated position did not influence APB MEP amplitudes. SIGNIFICANCE: Standardization of stimulation positions, nomenclature and criteria for threshold measurements should be considered in design and comparison of TMS protocols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motor-evoked potentials (MEPs) vary in size from one stimulus to the next. The objective of this study was to determine the cause and source of trial-to-trial MEP size variability. In two experiments involving 10 and 14 subjects, the variability of MEPs to cortical stimulation (cortical-MEPs) in abductor digiti minimi (ADM) and abductor hallucis (AH) was compared to those responses obtained using the triple stimulation technique (cortical-TST). The TST eliminates the effects of motor neuron (MN) response desynchronization and of repetitive MN discharges. Submaximal stimuli were used in both techniques. In six subjects, cortical-MEP variability was compared to that of brainstem-MEP and brainstem-TST. Variability was greater for MEPs than that for TST responses, by approximately one-third. The variability was the same for cortical- and brainstem-MEPs and was similar in ADM and AH. Variability concerned at least 10-15% of the MN pool innervating the target muscle. With the stimulation parameters used, repetitive MN discharges did not influence variability. For submaximal stimuli, approximately two-third of the observed MEP size variability is caused by the variable number of recruited alpha-MNs and approximately one-third by changing synchronization of MN discharges. The source of variability is most likely localized at the spinal segmental level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Object Resection of lesions close to the primary motor cortex (M1) and the corticospinal tract (CST) is generally regarded as high-risk surgery due to reported rates of postoperative severe deficits of up to 50%. The authors' objective was to determine the feasibility and safety of low-threshold motor mapping and its efficacy for increasing the extent of lesion resection in the proximity of M1 and the CST in children and adolescents. Methods The authors analyzed 8 consecutive pediatric patients in whom they performed 9 resections for lesions within or close (≤ 10 mm) to M1 and/or the CST. Monopolar high-frequency motor mapping with train-of-five stimuli (pulse duration 500 μsec, interstimulus interval 4.0 msec, frequency 250 Hz) was used. The motor threshold was defined as the minimal stimulation intensity that elicited motor evoked potentials (MEPs) from target muscles (amplitude > 30 μV). Resection was performed toward M1 and the CST at sites negative to 1- to 3-mA high-frequency train-of-five stimulation. Results The M1 was identified through high-frequency train-of-five via application of varying low intensities. The lowest motor thresholds after final resection ranged from 1 to 9 mA in 8 cases and up to 18 mA in 1 case, indicating proximity to motor neurons. Intraoperative electroencephalography documented an absence of seizures during all surgeries. Two transient neurological deficits were observed, but there were no permanent deficits. Postoperative imaging revealed complete resection in 8 patients and a very small remnant (< 0.175 cm(3)) in 1 patient. Conclusions High-frequency train-of-five with a minimal threshold of 1-3 mA is a feasible and safe procedure for resections in the proximity of the CST. Thus, low-threshold motor mapping might help to expand the area for safe resection in pediatric patients with lesions located within the precentral gyrus and close to the CST, and may be regarded as a functional navigational tool. The additional use of continuous MEP monitoring serves as a safety feedback for the functional integrity of the CST, especially because the true excitability threshold in children is unknown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECT Resection of glioblastoma adjacent to motor cortex or subcortical motor pathways carries a high risk of both incomplete resection and postoperative motor deficits. Although the strategy of maximum safe resection is widely accepted, the rates of complete resection of enhancing tumor (CRET) and the exact causes for motor deficits (mechanical vs vascular) are not always known. The authors report the results of their concept of combining monopolar mapping and 5-aminolevulinic acid (5-ALA)-guided surgery in patients with glioblastoma adjacent to eloquent tissue. METHODS The authors prospectively studied 72 consecutive patients who underwent 5-ALA-guided surgery for a glioblastoma adjacent to the corticospinal tract (CST; < 10 mm) with continuous dynamic monopolar motor mapping (short-train interstimulus interval 4.0 msec, pulse duration 500 μsec) coupled to an acoustic motor evoked potential (MEP) alarm. The extent of resection was determined based on early (< 48 hours) postoperative MRI findings. Motor function was assessed 1 day after surgery, at discharge, and at 3 months. RESULTS Five patients were excluded because of nonadherence to protocol; thus, 67 patients were evaluated. The lowest motor threshold reached during individual surgery was as follows (motor threshold, number of patients): > 20 mA, n = 8; 11-20 mA, n = 13; 6-10 mA, n = 10; 4-5 mA, n = 13; and 1-3 mA, n = 23. Motor deterioration at postsurgical Day 1 and at discharge occurred in 30% (n = 20) and 10% (n = 7) of patients, respectively. At 3 months, 3 patients (4%) had a persisting postoperative motor deficit, 2 caused by vascular injury and 1 by mechanical injury. The rates of intra- and postoperative seizures were 1% and 0%, respectively. Complete resection of enhancing tumor was achieved in 73% of patients (49/67) despite proximity to the CST. CONCLUSIONS A rather high rate of CRET can be achieved in glioblastomas in motor eloquent areas via a combination of 5-ALA for tumor identification and intraoperative mapping for distinguishing between presumed and actual motor eloquent tissues. Continuous dynamic mapping was found to be a very ergonomic technique that localizes the motor tissue early and reliably.