5 resultados para MEF

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unraveling intra- and inter-cellular signaling networks managing cell-fate control, coordinating complex differentiation regulatory circuits and shaping tissues and organs in living systems remain major challenges in the post-genomic era. Resting on the laurels of past-century monolayer culture technologies, the cell culture community has only recently begun to appreciate the potential of three-dimensional mammalian cell culture systems to reveal the full scope of mechanisms orchestrating the tissue-like cell quorum in space and time. Capitalizing on gravity-enforced self-assembly of monodispersed primary embryonic mouse cells in hanging drops, we designed and characterized a three-dimensional cell culture model for ganglion-like structures. Within 24h, a mixture of mouse embryonic fibroblasts (MEF) and cells, derived from the dorsal root ganglion (DRG) (sensory neurons and Schwann cells) grown in hanging drops, assembled to coherent spherical microtissues characterized by a MEF feeder core and a peripheral layer of DRG-derived cells. In a time-dependent manner, sensory neurons formed a polar ganglion-like cap structure, which coordinated guided axonal outgrowth and innervation of the distal pole of the MEF feeder spheroid. Schwann cells, present in embryonic DRG isolates, tended to align along axonal structures and myelinate them in an in vivo-like manner. Whenever cultivation exceeded 10 days, DRG:MEF-based microtissues disintegrated due to an as yet unknown mechanism. Using a transgenic MEF feeder spheroid, engineered for gaseous acetaldehyde-inducible interferon-beta (ifn-beta) production by cotransduction of retro-/ lenti-viral particles, a short 6-h ifn-beta induction was sufficient to rescue the integrity of DRG:MEF spheroids and enable long-term cultivation of these microtissues. In hanging drops, such microtissues fused to higher-order macrotissue-like structures, which may pave the way for sophisticated bottom-up tissue engineering strategies. DRG:MEF-based artificial micro- and macrotissue design demonstrated accurate key morphological aspects of ganglions and exemplified the potential of self-assembled scaffold-free multicellular micro-/macrotissues to provide new insight into organogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Activation of the double-stranded RNA-activated protein kinase (PKR) leads to the induction of various pathways including the down-regulation of translation through phosphorylation of the eukaryotic translation initiation factor 2alpha (eIF-2alpha). There have been no reports to date about the role of PKR in radiation sensitivity. EXPERIMENTAL DESIGN: A clonogenic survival assay was used to investigate the sensitivity of PKR mouse embryo fibroblasts (MEF) to radiation therapy. 2-Aminopurine (2-AP), a chemical inhibitor of PKR, was used to inhibit PKR activation. Nuclear factor-kappaB (NF-kappaB) activation was assessed by electrophoretic mobility shift assay (EMSA). Expression of PKR and downstream targets was examined by Western blot analysis and immunofluorescence. RESULTS: Ionizing radiation leads to dose- and time-dependent increases in PKR expression and function that contributes to increased cellular radiation resistance as shown by clonogenic survival and terminal nucleotidyl transferase-mediated nick end labeling (TUNEL) apoptosis assays. Specific inhibition of PKR with the chemical inhibitor 2-AP restores radiation sensitivity. Plasmid transfection of the PKR wild-type (wt) gene into PKR(-/-) MEFs leads to increased radiation resistance. The protective effect of PKR to radiation may be mediated in part through NF-kappaB and Akt because both NF-kappaB and Akt are activated after ionizing radiation in PKR+/+ but not PKR-/- cells. CONCLUSIONS: We suggest a novel role for PKR as a mediator of radiation resistance modulated in part through the protective effects of NF-kappaB and Akt activation. The modification of PKR activity may be a novel strategy in the future to overcome radiation resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two homosexual men were colonized in the urethra with Haemophilus parainfluenzae nonsusceptible to ampicillin (MIC, 8 μg/ml), amoxicillin-clavulanate (MIC, 4 μg/ml), cefotaxime (MIC, 1.5 μg/ml), cefepime (MIC, 3 μg/ml), meropenem (MIC, 0.5 μg/ml), cefuroxime, azithromycin, ciprofloxacin, tetracycline, and chloramphenicol (all MICs, ≥ 32 μg/ml). Repetitive extragenic palindromic PCR (rep-PCR) showed that the strains were indistinguishable. The isolates had amino acid substitutions in PBP3, L4, GyrA, and ParC and possessed Mef(A), Tet(M), and CatS resistance mechanisms. This is the first report of extensively drug-resistant (XDR) H. parainfluenzae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both of the sphingosine kinase (SK) subtypes SK-1 and SK-2 catalyze the production of the bioactive lipid molecule sphingosine 1-phosphate (S1P). However, the subtype-specific cellular functions are largely unknown. In this study, we investigated the cellular function of SK-2 in primary mouse renal mesangial cells (mMC) and embryonic fibroblasts (MEF) from wild-type C57BL/6 or SK-2 knockout (SK2ko) mice. We found that SK2ko cells displayed a significantly higher proliferative and migratory activity when compared to wild-type cells, with concomitant increased cellular activities of the classical extracellular signal regulated kinase (ERK) and PI3K/Akt cascades, and of the small G protein RhoA. Furthermore, we detected an upregulation of SK-1 protein and S1P3 receptor mRNA expression in SK-2ko cells. The MEK inhibitor U0126 and the S1P1/3 receptor antagonist VPC23019 blocked the increased migration of SK-2ko cells. Additionally, S1P3ko mesangial cells showed a reduced proliferative behavior and reduced migration rate upon S1P stimulation, suggesting a crucial involvement of the S1P3 receptor. In summary, our data demonstrate that SK-2 exerts suppressive effects on cell growth and migration in renal mesangial cells and fibroblasts, and that therapeutic targeting of SKs for treating proliferative diseases requires subtype-selective inhibitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the effects of oral treatments of Echinococcus multilocularis-infected mice with the antimalarial drug mefloquine (MEF) and identified proteins that bind to MEF in parasite extracts and human cells by affinity chromatography. In a pilot experiment, MEF treatment was applied 5 days per week and was intensified by increasing the dosage stepwise from 12.5 mg/kg to 200 mg/kg during 4 weeks followed by treatments of 100 mg/kg during the last 7 weeks. This resulted in a highly significant reduction of parasite weight in MEF-treated mice compared with mock-treated mice, but the reduction was significantly less efficacious compared with the standard treatment regimen of albendazole (ABZ). In a second experiment, MEF was applied orally in three different treatment groups at dosages of 25, 50 or 100 mg/kg, but only twice a week, for a period of 12 weeks. Treatment at 100 mg/kg had a profound impact on the parasite, similar to ABZ treatment at 200 mg/kg/day (5 days/week for 12 weeks). No adverse side effects were noted. To identify proteins in E. multilocularis metacestodes that physically interact with MEF, affinity chromatography of metacestode extracts was performed on MEF coupled to epoxy-activated Sepharose(®), followed by SDS-PAGE and in-gel digestion LC-MS/MS. This resulted in the identification of E. multilocularis ferritin and cystatin as MEF-binding proteins. In contrast, when human cells were exposed to MEF affinity chromatography, nicotinamide phosphoribosyltransferase was identified as a MEF-binding protein. This indicates that MEF could potentially interact with different proteins in parasites and human cells.