5 resultados para MEASURING DEVICES
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This article reports on recent electrical and optical techniques for investigating cellular signaling reactions in artificial and native membranes immobilized on solid supports. The first part describes the formation of planar artificial lipid bilayers on gold electrodes, which reveal giga-ohm electrical resistance and the insertion and characterization of ionotropic receptors therein. These membranes are suited to record a few or even single ion channels by impedance spectroscopy. Such tethered membranes on planar arrays of microelectrodes offer mechanically robust, long-lasting measuring devices to probe the influence of different chemistries on biologically important ionotropic receptors and therefore will have a future impact to probe the function of channel proteins in basic science and in biosensor applications. In a second part, we present complementary approaches to form inside-out native membrane sheets that are immobilized on micrometer-sized beads or across submicrometer-sized holes machined in a planar support. Because the native membrane sheets are plasma membranes detached from live cells, these approaches offer a unique possibility to investigate cellular signaling processes, such as those mediated by ionotropic or G protein-coupled receptors, with original composition of lipids and proteins.
Resumo:
Instruments for on-farm determination of colostrum quality such as refractometers and densimeters are increasingly used in dairy farms. The colour of colostrum is also supposed to reflect its quality. A paler or mature milk-like colour is associated with a lower colostrum value in terms of its general composition compared with a more yellowish and darker colour. The objective of this study was to investigate the relationships between colour measurement of colostrum using the CIELAB colour space (CIE L*=from white to black, a*=from red to green, b*=from yellow to blue, chroma value G=visual perceived colourfulness) and its composition. Dairy cow colostrum samples (n=117) obtained at 4·7±1·5 h after parturition were analysed for immunoglobulin G (IgG) by ELISA and for fat, protein and lactose by infrared spectroscopy. For colour measurements, a calibrated spectrophotometer was used. At a cut-off value of 50 mg IgG/ml, colour measurement had a sensitivity of 50·0%, a specificity of 49·5%, and a negative predictive value of 87·9%. Colostral IgG concentration was not correlated with the chroma value G, but with relative lightness L*. While milk fat content showed a relationship to the parameters L*, a*, b* and G from the colour measurement, milk protein content was not correlated with a*, but with L*, b*, and G. Lactose concentration in colostrum showed only a relationship with b* and G. In conclusion, parameters of the colour measurement showed clear relationships to colostral IgG, fat, protein and lactose concentration in dairy cows. Implementation of colour measuring devices in automatic milking systems and milking parlours might be a potential instrument to access colostrum quality as well as detecting abnormal milk.
Resumo:
The aim of this study was to assess the performance of two light-emitting diode (LED)- and two laser fluorescence-based devices in detecting occlusal caries in vitro. Ninety-seven permanent molars were assessed twice by two examiners using two LED- (Midwest Caries - MID and VistaProof - VP) and two laser fluorescence-based (DIAGNOdent 2095 - LF and DIAGNOdent pen 2190 - LFpen) devices. After measuring, the teeth were histologically prepared and classified according to lesion extension. At D1 the specificities were 0.76 (LF and LFpen), 0.94 (MID), and 0.70 (VP); the sensitivities were 0.70 (LF), 0.62 (LFpen), 0.31 (MID), and 0.75 (VP). At D(3) threshold the specificities were 0.88 (LF), 0.87 (LFpen), 0.90 (MID), and 0.70 (VP); the sensitivities were 0.63 (LF and LFpen), 0.70 (MID), and 0.96 (VP). Spearman's rank correlations with histology were 0.56 (LF), 0.51 (LFpen), 0.55 (MID), and 0.58 (VP). Inter- and intraexaminer ICC values were high and varied from 0.83 to 0.90. Both LF devices seemed to be useful auxiliary tools to the conventional methods, presenting good reproducibility and better accuracy at D(3) threshold. MID was not able to differentiate sound surfaces from enamel caries and VP still needs improvement on the cut-off limits for its use.
Resumo:
OBJECTIVE: To evaluate the reliability and validity of a novel ultrasound (US) imaging method to measure metacarpophalangeal (MCP) and proximal interphalangeal (PIP) finger joint cartilage. METHODS: We examined 48 patients with rheumatoid arthritis (RA), 18 patients with osteoarthritis (OA), 24 patients with unclassified arthritis of the finger joints, and 34 healthy volunteers. The proximal cartilage layer of MCP and PIP joints for fingers 2-5 was bilaterally visualized from a posterior view, with joints in approximately 90 degrees flexion. Cartilage thickness was measured with integrated tools on static images. External validity was assessed by measuring radiologic joint space width (JSW) and a numeric joint space narrowing (JSN) score in patients with RA. RESULTS: Precise measurement was possible for 97.5% of MCP and 94.2% of PIP joints. Intraclass correlation coefficients for bilateral total joint US scores were 0.844 (95% confidence interval [95% CI] 0.648-0.935) for interobserver comparisons and 0.928 (95% CI 0.826-0.971) for intraobserver comparisons (using different US devices). The US score correlated with JSN for both hands (adjusted R(2) = 0.513, P < 0.001) and JSW of the same finger joints (adjusted R(2) = 0.635, P < 0.001). Reduced cartilage shown by US allowed discrimination of early symptomatic OA versus early RA and healthy joints. In patients with RA, US scores correlated with duration of treatment-resistant, progressive RA. CONCLUSION: The US method of direct visualization and quantification of cartilage in MCP and PIP joints is objective, reliable, valid, and can be useful for diagnostic purposes in patients with arthritis.
Resumo:
The current article presents a novel physiological control algorithm for ventricular assist devices (VADs), which is inspired by the preload recruitable stroke work. This controller adapts the hydraulic power output of the VAD to the end-diastolic volume of the left ventricle. We tested this controller on a hybrid mock circulation where the left ventricular volume (LVV) is known, i.e., the problem of measuring the LVV is not addressed in the current article. Experiments were conducted to compare the response of the controller with the physiological and with the pathological circulation, with and without VAD support. A sensitivity analysis was performed to analyze the influence of the controller parameters and the influence of the quality of the LVV signal on the performance of the control algorithm. The results show that the controller induces a response similar to the physiological circulation and effectively prevents over- and underpumping, i.e., ventricular suction and backflow from the aorta to the left ventricle, respectively. The same results are obtained in the case of a disturbed LVV signal. The results presented in the current article motivate the development of a robust, long-term stable sensor to measure the LVV.