34 resultados para MAXIMAL R-CLOSED SPACE
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Sleep disordered breathing with central apnea or hypopnea frequently occurs at high altitude and is thought to be caused by a decrease in blood CO(2) level. The aim of this study was to assess the effects of added respiratory dead space on sleep disordered breathing.
Resumo:
We examined the effect of normobaric hypoxia (3200 m) on maximal oxygen uptake (VO2max) and maximal power output (Pmax) during leg and upper-body exercise to identify functional and structural correlates of the variability in the decrement of VO2max (DeltaVO2max) and of maximal power output (DeltaPmax). Seven well trained male Nordic combined skiers performed incremental exercise tests to exhaustion on a cycle ergometer (leg exercise) and on a custom built doublepoling ergometer for cross-country skiing (upper-body exercise). Tests were carried out in normoxia (560 m) and normobaric hypoxia (3200 m); biopsies were taken from m. deltoideus. DeltaVO2max was not significantly different between leg (-9.1+/-4.9%) and upper-body exercise (-7.9+/-5.8%). By contrast, Pmax was significantly more reduced during leg exercise (-17.3+/-3.3%) than during upper-body exercise (-9.6+/-6.4%, p<0.05). Correlation analysis did not reveal any significant relationship between leg and upper-body exercise neither for DeltaVO2max nor for DeltaPmax. Furthermore, no relationship was observed between individual DeltaVO2max and DeltaPmax. Analysis of structural data of m. deltoideus revealed a significant correlation between capillary density and DeltaPmax (R=-0.80, p=0.03), as well as between volume density of mitochondria and DeltaPmax (R=-0.75, p=0.05). In conclusion, it seems that VO2max and Pmax are differently affected by hypoxia. The ability to tolerate hypoxia is a characteristic of the individual depending in part on the exercise mode. We present evidence that athletes with a high capillarity and a high muscular oxidative capacity are more sensitive to hypoxia.
Resumo:
Currently, observations of space debris are primarily performed with ground-based sensors. These sensors have a detection limit at some centimetres diameter for objects in Low Earth Orbit (LEO) and at about two decimetres diameter for objects in Geostationary Orbit (GEO). The few space-based debris observations stem mainly from in-situ measurements and from the analysis of returned spacecraft surfaces. Both provide information about mostly sub-millimetre-sized debris particles. As a consequence the population of centimetre- and millimetre-sized debris objects remains poorly understood. The development, validation and improvement of debris reference models drive the need for measurements covering the whole diameter range. In 2003 the European Space Agency (ESA) initiated a study entitled “Space-Based Optical Observation of Space Debris”. The first tasks of the study were to define user requirements and to develop an observation strategy for a space-based instrument capable of observing uncatalogued millimetre-sized debris objects. Only passive optical observations were considered, focussing on mission concepts for the LEO, and GEO regions respectively. Starting from the requirements and the observation strategy, an instrument system architecture and an associated operations concept have been elaborated. The instrument system architecture covers the telescope, camera and onboard processing electronics. The proposed telescope is a folded Schmidt design, characterised by a 20 cm aperture and a large field of view of 6°. The camera design is based on the use of either a frame-transfer charge coupled device (CCD), or on a cooled hybrid sensor with fast read-out. A four megapixel sensor is foreseen. For the onboard processing, a scalable architecture has been selected. Performance simulations have been executed for the system as designed, focussing on the orbit determination of observed debris particles, and on the analysis of the object detection algorithms. In this paper we present some of the main results of the study. A short overview of the user requirements and observation strategy is given. The architectural design of the instrument is discussed, and the main tradeoffs are outlined. An insight into the results of the performance simulations is provided.
Resumo:
Reflected at any level of organization of the central nervous system, most of the processes ranging from ion channels to neuronal networks occur in a closed loop, where the input to the system depends on its output. In contrast, most in vitro preparations and experimental protocols operate autonomously, and do not depend on the output of the studied system. Thanks to the progress in digital signal processing and real-time computing, it is now possible to artificially close the loop and investigate biophysical processes and mechanisms under increased realism. In this contribution, we review some of the most relevant examples of a new trend in in vitro electrophysiology, ranging from the use of dynamic-clamp to multi-electrode distributed feedback stimulation. We are convinced these represents the beginning of new frontiers for the in vitro investigation of the brain, promising to open the still existing borders between theoretical and experimental approaches while taking advantage of cutting edge technologies.
Resumo:
As oxidative stress has been implicated in the pathogenesis of certain viral diseases we determined antioxidant and prooxidant parameters in lungs and bronchoalveolar lavage fluid (BALF) of mice infected with a lethal dose of influenza A/PR8/34 virus. Viral infection was characterized by massive infiltration of leukocytes, mainly polymorphonuclear leukocytes, into the alveolar space. The total number of BALF cells increased up to 8-fold (day 3 post-infection) and these cells appeared activated as judged by their increased rates of superoxide anion radical (O2-.) generation upon stimulation. Maximal rates of radical generation by BALF cells during the early stages of infection were 15- or 70-fold higher than those of cells from control animals when expressed per cell or total BALF cells, respectively. At the terminal stages of infection the total capacity of BALF cells to release O2-. declined to approximately 35-fold the control values. Infection also resulted in increased in vivo formation of hydrogen peroxide (H2O2) within the lungs at a time that coincided with the maximal capacity of BALF cells to release O2-.. Whereas pulmonary activities of glutathione peroxidase and reductase remained unaltered, levels of ascorbate in the cell-free BALF decreased significantly during the early stages of the infection and then returned to normal levels and above, late in infection. The oxidation state of the dehydroascorbic acid/ascorbate couple increased concomitantly with the decrease in ascorbate concentrations early in infection and remained elevated throughout the infection. As assessed by the prevention of peroxyl radical-induced loss of phycoerythrin fluorescence, the total antioxidant capacity present in lung tissue homogenate from terminally ill animals was not diminished when compared to that prepared from lungs of control mice. We conclude that although early stages of influenza infection are associated with the presence of oxidative stress in the lung tissue and alveolar fluid lining the epithelial cells, this stress does not appear to overwhelm local antioxidant defenses. The results therefore do not support a direct causative role of oxidative tissue damage in the pathogenesis of influenza virus infection.
Resumo:
BACKGROUND: Peak oxygen uptake (peak Vo(2)) is an established integrative measurement of maximal exercise capacity in cardiovascular disease. After heart transplantation (HTx) peak Vo(2) remains reduced despite normal systolic left ventricular function, which highlights the relevance of diastolic function. In this study we aim to characterize the predictive significance of cardiac allograft diastolic function for peak Vo(2). METHODS: Peak Vo(2) was measured using a ramp protocol on a bicycle ergometer. Left ventricular (LV) diastolic function was assessed with tissue Doppler imaging sizing the velocity of the early (Ea) and late (Aa) apical movement of the mitral annulus, and conventional Doppler measuring early (E) and late (A) diastolic transmitral flow propagation. Correlation coefficients were calculated and linear regression models fitted. RESULTS: The post-transplant time interval of the 39 HTxs ranged from 0.4 to 20.1 years. The mean age of the recipients was 55 +/- 14 years and body mass index (BMI) was 25.4 +/- 3.9 kg/m(2). Mean LV ejection fraction was 62 +/- 4%, mean LV mass index 108 +/- 22 g/m(2) and mean peak Vo(2) 20.1 +/- 6.3 ml/kg/min. Peak Vo(2) was reduced in patients with more severe diastolic dysfunction (pseudonormal or restrictive transmitral inflow pattern), or when E/Ea was > or =10. Peak Vo(2) correlated with recipient age (r = -0.643, p < 0.001), peak heart rate (r = 0.616, p < 0.001) and BMI (r = -0.417, p = 0.008). Of all echocardiographic measurements, Ea (r = 0.561, p < 0.001) and Ea/Aa (r = 0.495, p = 0.002) correlated best. Multivariate analysis identified age, heart rate, BMI and Ea/Aa as independent predictors of peak Vo(2). CONCLUSIONS: Diastolic dysfunction is relevant for the limitation of maximal exercise capacity after HTx.