5 resultados para Méthode adaptative

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term visual field corresponds to the angular field of view that is seen by the eyes when they are fixed on a point straight-ahead. In neurological patients--e.g. stroke, trauma, or tumour patients--visual field function can be restricted, depending on lesion site and size. In contrast, the term "functional visual field" describes the area of visual field responsiveness under more ordinary viewing conditions. The visual exploration, i.e. the capacity to explore and analyze our visual world, is dependent on the integrity of the visual system and the oculomotor system which has to move the fovea from one object of interest to the next. In this paper, we present a new method to assess the functional visual field, conceptualized as the area that a patient actively scans with eye movements to detect predefined targets placed on everyday scenes. This method allows us to compare three levels of visual field function: (a) the spatial distribution of successful search (hits, i.e. which targets did the patient find?), (b) the spatial distribution of fixations (i.e. where did the patient preferentially search for targets?), and (c) the retinotopic level (i.e. the visual field assessed by perimetry). By integrating these three levels, one can evaluate functional outcomes of visual field disorders. Of particular importance is the question of how a patient compensates for a visual field loss with appropriate eye movements. A further clinical application of this method is the comparison of pre- with post-treatment data. Patients with visual field disorders usually undergo specific exploration trainings, aimed at enhancing the number and amplitude of saccades towards the region of the visual field deficit. The first experiences and clinical application with this method are presented here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

• Premise of the study: Because not all plant species will be able to move in response to global warming, adaptive evolution matters largely for plant persistence. As prerequisites for adaptive evolution, genetic variation in and selection on phenotypic traits are needed, but these aspects have not been studied in tropical species. We studied how plants respond to transplantation to different elevations on Mt. Kilimanjaro, Tanzania, and whether there is quantitative genetic (among-seed family) variation in and selection on life-history traits and their phenotypic plasticity to the different environments. • Methods: We reciprocally transplanted seed families of 15 common tropical, herbaceous species of the montane and savanna vegetation zone at Mt. Kilimanjaro to a watered experimental garden in the montane (1450 m) and in the savanna (880 m) zone at the mountain’s slope and measured performance, reproductive, and phenological traits. • Results: Plants generally performed worse in the savanna garden, indicating that the savanna climate was more stressful and thus that plants may suffer from future climate warming. We found significant quantitative genetic variation in all measured performance and reproductive traits in both gardens and for several measures of phenotypic plasticity in response to elevational transplantation. Moreover, we found positive selection on traits at low and intermediate trait values levelling to neutral or negative selection at high values. • Conclusions: We conclude that common plants at Mt. Kilimanjaro express quantitative genetic variation in fitness-relevant traits and in their plasticities, suggesting potential to adapt evolutionarily to future climate warming and increased temperature variability.