18 resultados para Lung-volumes
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: Cyclic recruitment during mechanical ventilation contributes to ventilator associated lung injury. Two different pathomechanisms in acute respiratory distress syndrome (ARDS) are currently discussed: alveolar collapse vs persistent flooding of small airways and alveoli. We compare two different ARDS animal models by computed tomography (CT) to describe different recruitment and derecruitment mechanisms at different airway pressures: (i) lavage-ARDS, favouring alveolar collapse by surfactant depletion; and (ii) oleic acid ARDS, favouring alveolar flooding by capillary leakage. METHODS: In 12 pigs [25 (1) kg], ARDS was randomly induced, either by saline lung lavage or oleic acid (OA) injection, and 3 animals served as controls. A respiratory breathhold manoeuvre without spontaneous breathing at different continuous positive airway pressure (CPAP) was applied in random order (CPAP levels of 5, 10, 15, 30, 35 and 50 cm H(2)O) and spiral-CT scans of the total lung were acquired at each CPAP level (slice thickness=1 mm). In each spiral-CT the volume of total lung parenchyma, tissue, gas, non-aerated, well-aerated, poorly aerated, and over-aerated lung was calculated. RESULTS: In both ARDS models non-aerated lung volume decreased significantly from CPAP 5 to CPAP 50 [oleic acid lung injury (OAI): 346.9 (80.1) to 96.4 (48.8) ml, P<0.001; lavage-ARDS: 245 17.6) to 42.7 (4.8) ml, P<0.001]. In lavage-ARDS poorly aerated lung volume decreased at higher CPAP levels [232 (45.2) at CPAP 10 to 84 (19.4) ml at CPAP 50, P<0.001] whereas in OAI poorly aerated lung volume did not vary at different airway pressures. CONCLUSIONS: In both ARDS models well-aerated and non-aerated lung volume respond to different CPAP levels in a comparable fashion: Thus, a cyclical alveolar collapse seems to be part of the derecruitment process also in the OA-ARDS. In OA-ARDS, the increase in poorly aerated lung volume reflects the specific initial lesion, that is capillary leakage with interstitial and alveolar oedema.
Resumo:
We investigated the consequences of early malnutrition on milk production by dams and on body weight and structural lung growth of young rats using two models of protein restriction. Dams of the early restriction group were fed an 8% casein diet starting at parturition. Those of the delayed restriction group received a 12% casein diet from lactation d 8-14 and thereafter the 8% diet. After weaning, early restriction and delayed restriction group rats were maintained on low protein until d 49, then refed the control diet (18% casein) up to d 126. Milk was analyzed on d 12. Animals were killed at d 21, 49, and 126 for lung fixation in situ. In this report, we show that protein restriction lowered milk yield to 38% of normal. Milk lipid per gram of dry weight tended to be increased, whereas lactose and protein were significantly decreased. Pups from protein-restricted dams grew less and had lower lung volumes, effects being more serious at d 49. However, specific lung volumes (in milliliters per 100 g body weight) were constantly increased. This means that lung was either less affected than body mass or overdistended due to less connective tissue. After refeeding, both groups showed a remarkable catch-up in growth with restoration of the normal allometric relationship between lung volume and body weight. Thus, even after an early onset of protein restriction to total body, the lung is still capable to substantially recover from growth retardation.
Resumo:
BACKGROUND Previous studies found larger lung volumes at school-age in formerly breastfed children, with some studies suggesting an effect modification by maternal asthma. We wanted to explore this further in children who had undergone extensive lung function testing. The current study aimed to assess whether breastfeeding was associated with larger lung volumes and, if so, whether all compartments were affected. We also assessed association of breastfeeding with apparent diffusion coefficient (ADC), which measures freedom of gas diffusion in alveolar-acinar compartments and is a surrogate of alveolar dimensions. Additionally, we assessed whether these effects were modified by maternal asthma. METHODS We analysed data from 111 children and young adults aged 11-21 years, who had participated in detailed lung function testing, including spirometry, plethysmography and measurement of ADC of (3)Helium ((3)He) by MR. Information on breastfeeding came from questionnaires applied in early childhood (age 1-4 years). We determined the association between breastfeeding and these measurements using linear regression, controlling for potential confounders. RESULTS We did not find significant evidence for an association between duration of breastfeeding and lung volumes or alveolar dimensions in the entire sample. In breastfed children of mothers with asthma, we observed larger lung volumes and larger average alveolar size than in non-breastfed children, but the differences did not reach significance levels. CONCLUSIONS Confirmation of effects of breastfeeding on lung volumes would have important implications for public health. Further investigations with larger sample sizes are warranted.
Resumo:
BACKGROUND: Morphological changes in preterm infants with bronchopulmonary dysplasia (BPD) have functional consequences on lung volume, ventilation inhomogeneity and respiratory mechanics. Although some studies have shown lower lung volumes and increased ventilation inhomogeneity in BPD infants, conflicting results exist possibly due to differences in sedation and measurement techniques. METHODOLOGY/PRINCIPAL FINDINGS: We studied 127 infants with BPD, 58 preterm infants without BPD and 239 healthy term-born infants, at a matched post-conceptional age of 44 weeks during quiet natural sleep according to ATS/ERS standards. Lung function parameters measured were functional residual capacity (FRC) and ventilation inhomogeneity by multiple breath washout as well as tidal breathing parameters. Preterm infants with BPD had only marginally lower FRC (21.4 mL/kg) than preterm infants without BPD (23.4 mL/kg) and term-born infants (22.6 mL/kg), though there was no trend with disease severity. They also showed higher respiratory rates and lower ratios of time to peak expiratory flow and expiratory time (t(PTEF)/t(E)) than healthy preterm and term controls. These changes were related to disease severity. No differences were found for ventilation inhomogeneity. CONCLUSIONS: Our results suggest that preterm infants with BPD have a high capacity to maintain functional lung volume during natural sleep. The alterations in breathing pattern with disease severity may reflect presence of adaptive mechanisms to cope with the disease process.
Resumo:
BACKGROUND The issue of phrenic nerve preservation during pneumonectomy is still an unanswered question. So far, its direct effect on immediate postoperative pulmonary lung function has never been evaluated in a prospective trial. METHODS We conducted a prospective crossover study including 10 patients undergoing pneumonectomy for lung cancer between July 2011 and July 2012. After written informed consent, all consecutive patients who agreed to take part in the study and in whom preservation of the phrenic nerve during operation was possible, were included in the study. Upon completion of lung resection, a catheter was placed in the proximal paraphrenic tissue on the pericardial surface. After an initial phase of recovery of 5 days all patients underwent ultrasonographic assessment of diaphragmatic motion followed by lung function testing with and without induced phrenic nerve palsy. The controlled, temporary paralysis of the ipsilateral hemidiaphragm was achieved by local administration of lidocaine 1% at a rate of 3 mL/h (30 mg/h) via the above-mentioned catheter. RESULTS Temporary phrenic nerve palsy was accomplished in all but 1 patient with suspected catheter dislocation. Spirometry showed a significant decrease in dynamic lung volumes (forced expiratory volume in 1 second and forced vital capacity; p < 0.05) with the paralyzed hemidiaphragm. Blood oxygen saturation levels did not change significantly. CONCLUSIONS Our results show that phrenic nerve palsy causes a significant impairment of dynamic lung volumes during the early postoperative period after pneumonectomy. Therefore, in these already compromised patients, intraoperative phrenic nerve injury should be avoided whenever possible.
Resumo:
Effects of protein deficiency during the whole period of postnatal development and intensive growth were studied in the rat lung parenchyma. Dams received a low protein diet as follows: early restriction, 8% casein diet from parturition, and delayed restriction, 12% then 8% casein diet from lactation d 8. After weaning (d 21), early restriction and delayed restriction group rats were maintained on the 8% casein diet until d 49, wherefore they were returned to normal food (18% casein) for 11 wk. Lungs were processed for light and electron microscopic morphometry on d 21, 49, and 126. The diffusion capacity of the lung for O2 (DLO2) was also determined from the morphologic parameters. Volume and surface densities of the parenchymal components of malnourished rats did not consistently differ from controls. Because of lower lung volumes, absolute values, including DLO2, were all significantly decreased. Further, although lung volume growth was less impaired than body growth and thus deviated from the normal allometric relationship, most morphometric parameters paralleled body weight changes. Visually, we detected minor morphologic alterations at d 21 and 49, not necessarily reflected by morphometric data. But, importantly, lung parenchyma appeared mature at weaning despite the growth retardation. Normal refeeding resulted in a striking regrowth of the lung parenchyma. Although early restriction rats did not fully catch up in lung volume, most parenchymal parameters and DLO2 were largely restored in both refed groups.
Resumo:
OBJECTIVES The importance of phrenic nerve preservation during pneumonectomy remains controversial. We previously demonstrated that preservation of the phrenic nerve in the immediate postoperative period preserved lung function by 3-5% but little is known about its long-term effects. We, therefore, decided to investigate the effect of temporary ipsilateral cervical phrenic nerve block on dynamic lung volumes in mid- to long-term pneumonectomy patients. METHODS We investigated 14 patients after a median of 9 years post pneumonectomy (range: 1-15 years). Lung function testing (spirometry) and fluoroscopic and/or sonographic assessment of diaphragmatic motion on the pneumonectomy side were performed before and after ultrasonographic-guided ipsilateral cervical phrenic nerve block by infiltration with lidocaine. RESULTS Ipsilateral phrenic nerve block was successfully achieved in 12 patients (86%). In the remaining 2 patients, diaphragmatic motion was already paradoxical before the nerve block. We found no significant difference on dynamic lung function values (FEV1 'before' 1.39 ± 0.44 vs FEV1 'after' 1.38 ± 0.40; P = 0.81). CONCLUSIONS Induction of a temporary diaphragmatic palsy did not significantly influence dynamic lung volumes in mid- to long-term pneumonectomy patients, suggesting that preservation of the phrenic nerve is of greater importance in the immediate postoperative period after pneumonectomy.
Resumo:
Although postmortem imaging has gained prominence in the field of forensic medicine, evaluation of the postmortem lung remains problematic. Specifically, differentiation of normal postmortem changes and pathological pulmonary changes is challenging and at times impossible. In this study, five corpses were ventilated using a mechanical ventilator with a pressure of 40 mbar (40.8 cm H(2)O). The ventilation was performed via an endotracheal tube, a larynx mask or a continuous positive airway pressure mask. Postmortem computed tomographic images of the lungs before and with a ventilation of 40 mbar (40.8 cm H(2)O) were evaluated and the lung volumes were measured with segmentation software. Postmortem ventilation led to a clearly visible decrease of both the density in the dependant parts of the lungs and ground glass attenuation, whereas consolidated areas remained unchanged. Furthermore, a mean increase in the lung volume of 2.10 l was seen. Pathological changes such as septal thickening or pulmonary nodules in the lung parenchyma became more detectable with postmortem ventilation. Intracorporal postmortem mechanical ventilation of the lungs appears to be an effective method for enhancing detection of small pathologies of the lung parenchyma as well as for discriminating between consolidation, ground glass attenuation and position-dependent density.
Resumo:
Postmortem imaging has gained prominence in the field of forensic pathology. Even with experience in this procedure, difficulties arise in evaluating pathologies of the postmortem lung. The effect of postmortem ventilation with applied pressures of 10, 20, 30 and 40mbar was evaluated in 10 corpses using simultaneous postmortem computed tomography (pmCT) scans. Ventilation was performed via a continuous positive airway pressure mask (n=5), an endotracheal tube (n=4) and a laryngeal mask (n=1) using a portable home care ventilator. The lung volumes were measured and evaluated by a segmentation technique based on reconstructed CT data. The resulting changes to the lungs were analyzed. Postmortem ventilation at 40mbar induced a significant (p<0.05) unfolding of the lungs, with a mean volume increase of 1.32l. Small pathologies of the lung such as scarring and pulmonary nodules as well as emphysema were revealed, while inner livores were reduced. Even though lower ventilation pressures resulted in a significant (p<0.05) volume increase, pathologies were best evaluated when a pressure of 40mbar was applied, due to the greater reduction of the inner livores. With the ventilation-induced expansion of the lungs, a decrease in the heart diameter and gaseous distension of the stomach was recognized. In conclusion, postmortem ventilation is a feasible method for improving evaluation of the lungs and detection of small lung pathologies. This is because of the volume increase in the air-filled portions of the lung and reduced appearance of inner livores.
Resumo:
Background For reliable assessment of ventilation inhomogeneity, multiple-breath washout (MBW) systems should be realistically validated. We describe a new lung model for in vitro validation under physiological conditions and the assessment of a new nitrogen (N2)MBW system. Methods The N2MBW setup indirectly measures the N2 fraction (FN2) from main-stream carbon dioxide (CO2) and side-stream oxygen (O2) signals: FN2 = 1−FO2−FCO2−FArgon. For in vitro N2MBW, a double chamber plastic lung model was filled with water, heated to 37°C, and ventilated at various lung volumes, respiratory rates, and FCO2. In vivo N2MBW was undertaken in triplets on two occasions in 30 healthy adults. Primary N2MBW outcome was functional residual capacity (FRC). We assessed in vitro error (√[difference]2) between measured and model FRC (100–4174 mL), and error between tests of in vivo FRC, lung clearance index (LCI), and normalized phase III slope indices (Sacin and Scond). Results The model generated 145 FRCs under BTPS conditions and various breathing patterns. Mean (SD) error was 2.3 (1.7)%. In 500 to 4174 mL FRCs, 121 (98%) of FRCs were within 5%. In 100 to 400 mL FRCs, the error was better than 7%. In vivo FRC error between tests was 10.1 (8.2)%. LCI was the most reproducible ventilation inhomogeneity index. Conclusion The lung model generates lung volumes under the conditions encountered during clinical MBW testing and enables realistic validation of MBW systems. The new N2MBW system reliably measures lung volumes and delivers reproducible LCI values.
Resumo:
OBJECTIVES: We compared ventilation inhomogeneity assessed by electrical impedance tomography (EIT) and multiple breath washout (MBW) in preterm and term-born infants. We hypothesised that EIT measurements in spontaneously breathing infants are repeatable and that differences in regional ventilation distribution measured by EIT can distinguish between preterm and term-born infants. DESIGN: Cross-sectional group comparison study. SETTING: Lung function laboratory at a University Children's Hospital. PARTICIPANTS: Seventeen healthy term-born and 15 preterm infants at a matched postmenstrual age of 44 weeks. MEASUREMENTS AND RESULTS: We concurrently measured ventilation inhomogeneity by EIT, ventilation inhomogeneity (LCI) and functional residual capacity (FRC) by MBW and tidal breathing variables during unsedated quiet sleep. EIT measurements were highly repeatable (coefficient of variation 3.6%). Preterm infants showed significantly more ventilation of the independent parts of the lungs compared to healthy term-born infants assessed by EIT (mean difference 5.0, 95 CI 1.3-8%). Whereas the two groups showed no differences in lung volumes or ventilation inhomogeneities assessed by MBW, EIT discriminated better between term and preterm infants. (FRC/kg: mean difference 1.1 mL, 95% CI -1.4-3.8 mL; LCI: mean difference 0.03, 95% CI -0.32-0.25). CONCLUSIONS: EIT shows distinct differences in ventilation distribution between preterm and term-born infants, which cannot be detected by MBW. Although preterm infants are capable of dynamically maintaining overall functional residual volume and ventilation distribution, they show some spatial differences from fullterm infants.
Resumo:
Six full-term newborn infants are described who suffered from severe adult respiratory distress syndrome (ARDS). The triggering event was intrauterine/perinatal asphyxia in five, and group B streptococcal (GBS) septicemia in three. All had severe respiratory distress/failure and were ventilated mechanically with high concentrations of inspired oxygen and positive end-expiratory pressure. Radiography of the chest showed dense bilateral consolidation with air bronchograms and reduced lung volume. Persistent pulmonary hypertension (PPH) was documented in all cases. The coincidence of ARDS and PPH rendered respiratory management extremely difficult. For this reason high-frequency ventilation was instituted in all patients in order to improve CO2 elimination and induce respiratory alkalosis. Acute complications of respiratory therapy were encountered in five patients (pneumothorax, pulmonary interstitial emphysema, pneumopericardium). Three infants died (irreversible septic shock, progressive severe hypoxemia, and sudden cardiac arrest) after 17, 80, and 175 h of life. Histologic examination of the lungs was possible in all fatal cases and revealed typical changes of acute to subacute stages of ARDS. Three infants survived, the mean time of mechanical respiratory support being 703 h. Two patients were still dependent on oxygen after 1 month of life, and all survivors had increased interstitial markings and increased lung volumes on their chest roentgenograms at this time.
Resumo:
OBJECTIVES Age- and height-adjusted spirometric lung function of South Asian children is lower than those of white children. It is unclear whether this is purely genetic, or partly explained by the environment. In this study, we assessed whether cultural factors, socioeconomic status, intrauterine growth, environmental exposures, or a family and personal history of wheeze contribute to explaining the ethnic differences in spirometric lung function. METHODS We studied children aged 9 to 14 years from a population-based cohort, including 1088 white children and 275 UK-born South Asians. Log-transformed spirometric data were analyzed using multiple linear regressions, adjusting for anthropometric factors. Five different additional models adjusted for (1) cultural factors, (2) indicators of socioeconomic status, (3) perinatal data reflecting intrauterine growth, (4) environmental exposures, and (5) personal and family history of wheeze. RESULTS Height- and gender-adjusted forced vital capacity (FVC) and forced expired volume in 1 second (FEV1) were lower in South Asian than white children (relative difference -11% and -9% respectively, P < .001), but PEF and FEF50 were similar (P ≥ .5). FEV1/FVC was higher in South Asians (1.8%, P < .001). These differences remained largely unchanged in all 5 alternative models. CONCLUSIONS Our study confirmed important differences in lung volumes between South Asian and white children. These were not attenuated after adjustment for cultural and socioeconomic factors and intrauterine growth, neither were they explained by differences in environmental exposures nor a personal or family history of wheeze. This suggests that differences in lung function may be mainly genetic in origin. The implication is that ethnicity-specific predicted values remain important specifically for South Asian children.
Resumo:
INTRODUCTION The new ATS/ERS consensus report recommends in vitro validation of multiple-breath inert gas washout (MBW) equipment based on a lung model with simulated physiologic conditions. We aimed to assess accuracy of two MBW setups for infants and young children using this model, and to compare functional residual capacity (FRC) from helium MBW (FRCMBW ) with FRC from plethysmography (FRCpleth ) in vivo. METHODS The MBW setups were based on ultrasonic flow meter technology. Sulfur hexafluoride and helium were used as tracer gases. We measured FRC in vitro for specific model settings with and without carbon dioxide and calculated differences of measured to generated FRC. For in vivo evaluation, difference between FRCMBW and FRCpleth was calculated in 20 healthy children, median age 6.1 years. Coefficient of variation (CV) was calculated per FRC. RESULTS In the infant model (51 runs, FRC 80-300 ml), mean (SD) relative difference between generated and measured FRCs was 0.7 (4.7) %, median CV was 4.4% for measured FRCs. In the young child model, one setting (8 runs, FRC 400 ml) showed a relative difference of up to 13%. For the remaining FRCs (42 runs, FRC 600-1,400 ml), mean (SD) relative difference was -2.0 (3.4) %; median CV was 1.4% for measured FRCs. In vivo FRCpleth exceeded FRCMBW values by 37% on average. CONCLUSIONS Both setups measure lung volumes in the intended age group reliably and reproducibly. Characteristics of different techniques should be considered when measuring lung volumes in vivo. Pediatr Pulmonol. © 2014 Wiley Periodicals, Inc.
Resumo:
Hepatocyte growth factor (HGF) is involved in development and regeneration of the lungs. Human HGF, which was expressed specifically by alveolar epithelial type II cells after gene transfer, attenuated the bleomycin-induced pulmonary fibrosis in an animal model. As there are also regions that appear morphologically unaffected in fibrosis, the effects of this gene transfer to normal lungs is of interest. In vitro studies showed that HGF inhibits the formation of the basal lamina by cultured alveolar epithelial cells. Thus we hypothesized that, in the healthy lung, cell-specific expression of HGF induces a remodeling within septal walls. Electroporation of a plasmid of human HGF gene controlled by the surfactant protein C promoter was applied for targeted gene transfer. Using design-based stereology at light and electron microscopic level, structural alterations were analyzed and compared with a control group. HGF gene transfer increased the volume of distal air spaces, as well as the surface area of the alveolar epithelium. The volume of septal walls, as well as the number of alveoli, was unchanged. Volumes per lung of collagen and elastic fibers were unaltered, but a marked reduction of the volume of residual extracellular matrix (all components other than collagen and elastic fibers) and interstitial cells was found. A correlation between the volumes of residual extracellular matrix and distal air spaces, as well as total surface area of alveolar epithelium, could be established. Cell-specific expression of HGF leads to a remodeling of the connective tissue within the septal walls in the healthy lung, which is associated with more pronounced stretching of distal air spaces at a given hydrostatic pressure during instillation fixation.