10 resultados para Low temperature research
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In humans, there are different types of cutaneous cold-sensitive afferents responsible for cold sensation and cold pain. Innocuous cold is primarily mediated by a population of slow A delta afferents, based on psychophysical and neurophysiological studies. Noxious cold (usually below 15 degrees C) is mediated, at least in part, by polymodal nociceptors. There is also a population of unmyelinated afferents responsive to innocuous low temperature, some of which also respond to heat, whose sensory function has not been completely defined. A paradoxical hot/burning evoked by cooling is unmasked by A-fibre block, and similar sensations are evoked by applying simultaneous cool and warm stimuli to adjacent skin areas. These unmyelinated fibres activated by innocuous cooling (and heating) may contribute to this hot/burning sensation, along with other thermoregulatory functions.
Resumo:
[1] The evolution of the rift shoulder and the sedimentary sequence of the Morondava basin in western Madagascar was mainly influenced by a Permo-Triassic continental failed rift (Karroo rift), and the early Jurassic separation of Madagascar from Africa. Karroo deposits are restricted to a narrow corridor along the basement-basin contact and parts of this contact feature a steep escarpment. Here, apatite fission track (AFT) analysis of a series of both basement and sediment samples across the escarpment reveals the low-temperature evolution of the exhuming Precambrian basement in the rift basin shoulder and the associated thermal evolution of the sedimentary succession. Seven basement and four Karroo sediment samples yield apparent AFT ages between ∼330 and ∼215 Ma and ∼260 and ∼95 Ma, respectively. Partially annealed fission tracks and thermal modeling indicate post-depositional thermal overprinting of both basement and Karroo sediment. Rocks presently exposed in the rift shoulder indicate temperatures of >60°C associated with this reheating whereby the westernmost sample in the sedimentary plain experienced almost complete resetting of the detrital apatite grains at temperatures of about ∼90–100°C. The younging of AFT ages westward indicates activity of faults, re-activating inherited Precambrian structures during Karroo sedimentation. Furthermore, our data suggest onset of final cooling/exhumation linked to (1) the end of Madagascar's drift southward relative to Africa during the Early Cretaceous, (2) activity of the Marion hot spot and associated Late Cretaceous break-up between Madagascar and India, and (3) the collision of India with Eurasia and subsequent re-organization of spreading systems in the Indian Ocean.
Resumo:
Fission track analysis was applied to the Precambrian suites of Madagascar in order to identify the lower-temperature cooling histories and their relationships to the Phanerozoic events that affected the island. Apatite ages range from 431 to 68 Ma, and zircon ages range from 452 to 238 Ma. Thermochronologically, the island can be divided into a southern, central, and northern region each with a subdivision on an east-west basis. The southern region is sharply separated from the central region by strongly contrasting apparent apatite ages over the northwest-southeast striking Ranotsara Shear Zone (RSZ). The change in apparent ages over the RSZ is indicative of later reactivation along younger brittle faults. The central region has the oldest ages of the island and has a diffuse contact to the third region northward. Along the entire western margin of the Precambrian basement initial Paleozoic exhumation was followed by heating (burial by sediments) during Jurassic and Cretaceous times. A decrease in ages along the eastern margin from 119 to 68 Ma coincides with the predicted positions of the Marion hot spot after effects of erosion are considered. On the other hand, these ages may represent progressive opening of the margin in a southward direction together with associated denudation of the rift shoulder. The eastern part of the central region has remained very stable since at least Devonian times, undergoing only long-term very slow exhumation at rates of 1–5 m/Myr.
Resumo:
Molecular nitrogen (N2) is thought to have been the most abundant form of nitrogen in the protosolar nebula. It is the main N-bearing molecule in the atmospheres of Pluto and Triton and probably the main nitrogen reservoir from which the giant planets formed. Yet in comets, often considered the most primitive bodies in the solar system, N2 has not been detected. Here we report the direct in situ measurement of N2 in the Jupiter family comet 67P/Churyumov-Gerasimenko, made by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis mass spectrometer aboard the Rosetta spacecraft. A N2/CO ratio of Embedded Image (2σ standard deviation of the sampled mean) corresponds to depletion by a factor of ~25.4 ± 8.9 as compared to the protosolar value. This depletion suggests that cometary grains formed at low-temperature conditions below ~30 kelvin.