5 resultados para Low cost airlines

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liver-on-chip systems are widely seen as having the potential to replace animal testing for long-term liver toxicity assessments. However, such systems necessitate solutions, such as electrochemical microsensors, to provide information about the cells exposed to chemical compounds in a confined space. This study describes the development of microsensors for the detection of alanine-aminotransferase (ALT), an intracellular enzyme found in hepatocytes, for monitoring the viability of in-vitro hepatic cell cultures. The electrochemical sensors were developed by using screen printed electrodes functionalized by drop-casting. These technologies are intended to produce disposable and low-cost sensors that can easily be exchanged once their performance is degraded. The sensors are capable of measuring ALT in a microfluidic environment through the detection of changes in glutamate concentration. The microsensors were found to be stable for more than 60 days and were successfully tested using hepatocellular lysates to assess their capability to quantify ALT activity in a hepatic cell culture. These results open the way to their integration in liver bioreactors to assess hepatocellular toxicity in-vitro.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A nonfluorescent low-cost, low-density oligonucleotide array was designed for detecting the whole coronavirus genus after reverse transcription (RT)-PCR. The limit of detection was 15.7 copies/reaction. The clinical detection limit in patients with severe acute respiratory syndrome was 100 copies/sample. In 39 children suffering from coronavirus 229E, NL63, OC43, or HKU1, the sensitivity was equal to that of individual real-time RT-PCRs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND The cost-effectiveness of routine viral load (VL) monitoring of HIV-infected patients on antiretroviral therapy (ART) depends on various factors that differ between settings and across time. Low-cost point-of-care (POC) tests for VL are in development and may make routine VL monitoring affordable in resource-limited settings. We developed a software tool to study the cost-effectiveness of switching to second-line ART with different monitoring strategies, and focused on POC-VL monitoring. METHODS We used a mathematical model to simulate cohorts of patients from start of ART until death. We modeled 13 strategies (no 2nd-line, clinical, CD4 (with or without targeted VL), POC-VL, and laboratory-based VL monitoring, with different frequencies). We included a scenario with identical failure rates across strategies, and one in which routine VL monitoring reduces the risk of failure. We compared lifetime costs and averted disability-adjusted life-years (DALYs). We calculated incremental cost-effectiveness ratios (ICER). We developed an Excel tool to update the results of the model for varying unit costs and cohort characteristics, and conducted several sensitivity analyses varying the input costs. RESULTS Introducing 2nd-line ART had an ICER of US$1651-1766/DALY averted. Compared with clinical monitoring, the ICER of CD4 monitoring was US$1896-US$5488/DALY averted and VL monitoring US$951-US$5813/DALY averted. We found no difference between POC- and laboratory-based VL monitoring, except for the highest measurement frequency (every 6 months), where laboratory-based testing was more effective. Targeted VL monitoring was on the cost-effectiveness frontier only if the difference between 1st- and 2nd-line costs remained large, and if we assumed that routine VL monitoring does not prevent failure. CONCLUSION Compared with the less expensive strategies, the cost-effectiveness of routine VL monitoring essentially depends on the cost of 2nd-line ART. Our Excel tool is useful for determining optimal monitoring strategies for specific settings, with specific sex-and age-distributions and unit costs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this chapter a low-cost surgical navigation solution for periacetabular osteotomy (PAO) surgery is described. Two commercial inertial measurement units (IMU, Xsens Technologies, The Netherlands), are attached to a patient’s pelvis and to the acetabular fragment, respectively. Registration of the patient with a pre-operatively acquired computer model is done by recording the orientation of the patient’s anterior pelvic plane (APP) using one IMU. A custom-designed device is used to record the orientation of the APP in the reference coordinate system of the IMU. After registration, the two sensors are mounted to the patient’s pelvis and acetabular fragment, respectively. Once the initial position is recorded, the orientation is measured and displayed on a computer screen. A patient-specific computer model generated from a pre-operatively acquired computed tomography (CT) scan is used to visualize the updated orientation of the acetabular fragment. Experiments with plastic bones (7 hip joints) performed in an operating room comparing a previously developed optical navigation system with our inertial-based navigation system showed no statistical difference on the measurement of acetabular component reorientation (anteversion and inclination). In six out of seven hip joints the mean absolute difference was below five degrees for both anteversion and inclination.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE To evaluate a low-cost, inertial sensor-based surgical navigation solution for periacetabular osteotomy (PAO) surgery without the line-of-sight impediment. METHODS Two commercial inertial measurement units (IMU, Xsens Technologies, The Netherlands), are attached to a patient's pelvis and to the acetabular fragment, respectively. Registration of the patient with a pre-operatively acquired computer model is done by recording the orientation of the patient's anterior pelvic plane (APP) using one IMU. A custom-designed device is used to record the orientation of the APP in the reference coordinate system of the IMU. After registration, the two sensors are mounted to the patient's pelvis and acetabular fragment, respectively. Once the initial position is recorded, the orientation is measured and displayed on a computer screen. A patient-specific computer model generated from a pre-operatively acquired computed tomography scan is used to visualize the updated orientation of the acetabular fragment. RESULTS Experiments with plastic bones (eight hip joints) performed in an operating room comparing a previously developed optical navigation system with our inertial-based navigation system showed no statistically significant difference on the measurement of acetabular component reorientation. In all eight hip joints the mean absolute difference was below four degrees. CONCLUSION Using two commercially available inertial measurement units we show that it is possible to accurately measure the orientation (inclination and anteversion) of the acetabular fragment during PAO surgery and therefore to successfully eliminate the line-of-sight impediment that optical navigation systems have.