19 resultados para Low band-gap copolymers

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene nanoribbons (GNRs), defined as nanometer-wide strips of graphene, have attracted increasing attention as promising candidates for next-generation semiconductors. Here, we demonstrate a bottom-up strategy toward novel low band gap GNRs (E-g = 1.70 eV) with a well-defined cove-type periphery both in solution and on a solid substrate surface with chrysene as the key monomer. Corresponding cyclized chrysene-based oligornerS consisting of the dimer and tetramer are obtained via an Ullmann Coupling followed by oxidative intramolecular cyclodehydrogenation in solution, and much higher GNR homologues via on-surface synthesis. These oligomers adopt nonplanar structures due to the isteric repulsion between the two C-H bonds at the inner cove position. Characterizations by single crystal X-ray analysis, UV-vis absorption spectroscopy, NMR spectroscopy, and scanning tunneling microscopy (STM) are described. The interpretation is assisted by density functional theory (DFT) calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Recently, two simple clinical scores were published to predict survival in trauma patients. Both scores may successfully guide major trauma triage, but neither has been independently validated in a hospital setting. METHODS This is a cohort study with 30-day mortality as the primary outcome to validate two new trauma scores-Mechanism, Glasgow Coma Scale (GCS), Age, and Pressure (MGAP) score and GCS, Age and Pressure (GAP) score-using data from the UK Trauma Audit and Research Network. First, an assessment of discrimination, using the area under the receiver operating characteristic (ROC) curve, and calibration, comparing mortality rates with those originally published, were performed. Second, we calculated sensitivity, specificity, predictive values, and likelihood ratios for prognostic score performance. Third, we propose new cutoffs for the risk categories. RESULTS A total of 79,807 adult (≥16 years) major trauma patients (2000-2010) were included; 5,474 (6.9%) died. Mean (SD) age was 51.5 (22.4) years, median GCS score was 15 (interquartile range, 15-15), and median Injury Severity Score (ISS) was 9 (interquartile range, 9-16). More than 50% of the patients had a low-risk GAP or MGAP score (1% mortality). With regard to discrimination, areas under the ROC curve were 87.2% for GAP score (95% confidence interval, 86.7-87.7) and 86.8% for MGAP score (95% confidence interval, 86.2-87.3). With regard to calibration, 2,390 (3.3%), 1,900 (28.5%), and 1,184 (72.2%) patients died in the low, medium, and high GAP risk categories, respectively. In the low- and medium-risk groups, these were almost double the previously published rates. For MGAP, 1,861 (2.8%), 1,455 (15.2%), and 2,158 (58.6%) patients died in the low-, medium-, and high-risk categories, consonant with results originally published. Reclassifying score point cutoffs improved likelihood ratios, sensitivity and specificity, as well as areas under the ROC curve. CONCLUSION We found both scores to be valid triage tools to stratify emergency department patients, according to their risk of death. MGAP calibrated better, but GAP slightly improved discrimination. The newly proposed cutoffs better differentiate risk classification and may therefore facilitate hospital resource allocation. LEVEL OF EVIDENCE Prognostic study, level II.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure of atomically precise armchair graphene nanoribbons of width N=7 (7-AGNRs) are investigated by scanning tunneling spectroscopy (STS) on Au(111). We record the standing waves in the local density of states of finite ribbons as a function of sample bias and extract the dispersion relation of frontier electronic states by Fourier transformation. The wave-vector-dependent contributions from these states agree with density functional theory calculations, thus enabling the unambiguous assignment of the states to the valence band, the conduction band, and the next empty band with effective masses of 0.41±0.08me,0.40±0.18me, and 0.20±0.03me, respectively. By comparing the extracted dispersion relation for the conduction band to corresponding height-dependent tunneling spectra, we find that the conduction band edge can be resolved only at small tip-sample separations and has not been observed before. As a result, we report a band gap of 2.37±0.06 eV for 7-AGNRs adsorbed on Au(111).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plasma anion gap is a frequently used parameter in the clinical diagnosis of a variety of conditions. The commonest application of the anion gap is to classify cases of metabolic acidosis into those that do and those that do not leave unmeasured anions in the plasma. While this algorithm is useful in streamlining the diagnostic process, it should not be used solely in this fashion. The anion gap measures the difference between the unmeasured anions and unmeasured cations and thus conveys much more information to the clinician than just quantifying anions of strong acids. In this chapter, the significance of the anion gap is emphasized and several examples are given to illustrate a more analytic approach to using the clinical anion gap; these include disorders of low anion gap, respiratory alkalosis and pyroglutamic acidosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the design of a submillimeter-wave mixer based on electromagnetic band gap (EBG) technology and using subharmonic local oscillator (LO) injection. The indicated device converts an incoming submilimeter wavelength signal into a 1-5 GHz intermediate frequency (IF) signal by mixing it with a subharmonic LO signal. The mixer consists of a dual-band receiver and two coplanar stripline (CPS) filters, collocated on top of a three-dimensional (3-D) EBG structure. A four-element array of the proposed receivers was designed, fabricated and tested. The configuration demonstrated reasonable performance: conversion loss below 8 dB and noise temperature below 3000 K. The presented concept can be used for higher frequencies, provided the availability of sufficiently powerful LO sources.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Time-based localization techniques such as multilateration are favoured for positioning to wide-band signals. Applying the same techniques with narrow-band signals such as GSM is not so trivial. The process is challenged by the needs of synchronization accuracy and timestamp resolution both in the nanoseconds range. We propose approaches to deal with both challenges. On the one hand, we introduce a method to eliminate the negative effect of synchronization offset on time measurements. On the other hand, we propose timestamps with nanoseconds accuracy by using timing information from the signal processing chain. For a set of experiments, ranging from sub-urban to indoor environments, we show that our proposed approaches are able to improve the localization accuracy of TDOA approaches by several factors. We are even able to demonstrate errors as small as 10 meters for outdoor settings with narrow-band signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of our study was to assess physical and emotional factors in heart transplant patients. A prospective design was used to compare patients' physical symptoms, emotional complaints, and restrictions at admission to the waiting list, immediately after, and 1 and 5 years after heart transplantation. Thirty-three patients were included (30 male, 3 female) in the study. Their mean age at admission was 48 +/- 10.2 years. Of these, 23 suffered from cardiomyopathy, 8 from coronary heart disease, and 2 from valvular insufficiency. At admission, the patients suffered from symptoms of cardiac insufficiency, and were restricted in sports, gardening, hobbies, sexual life, job, food-intake, and mobility. More than three-fourths rated their physical and emotional status as moderate to poor. Emotionally, they suffered from irritability, restlessness, depression, psychic lability, lowered drive, lack of social contact, low self-esteem, and anxiety. At the end of rehabilitation (4-8 weeks after the operation), all physical and emotional complaints, as well as restrictions had significantly decreased (p < 0.0001 to p < 0.001), except for trembling, numbness of hands/feet, and food-intake. One year postoperatively, patients reported even fewer physical complaints (p < 0.01). Three-fourths rated their physical and emotional status good or excellent. Five years postoperatively--in contrast to physical status, restrictions, and physical complaints--the emotional complaints had increased significantly (p < 0.0001). Patients reported excellent physical performance up to 5 years postoperatively. On the other hand, the study revealed that their emotional well-being had significantly deteriorated from 1 to 5 years postoperatively. Attention should, therefore, not only be paid to the good physical health of the survivors, but also to the worsening of their emotional status.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transmission electron microscopy has provided most of what is known about the ultrastructural organization of tissues, cells, and organelles. Due to tremendous advances in crystallography and magnetic resonance imaging, almost any protein can now be modeled at atomic resolution. To fully understand the workings of biological "nanomachines" it is necessary to obtain images of intact macromolecular assemblies in situ. Although the resolution power of electron microscopes is on the atomic scale, in biological samples artifacts introduced by aldehyde fixation, dehydration and staining, but also section thickness reduces it to some nanometers. Cryofixation by high pressure freezing circumvents many of the artifacts since it allows vitrifying biological samples of about 200 mum in thickness and immobilizes complex macromolecular assemblies in their native state in situ. To exploit the perfect structural preservation of frozen hydrated sections, sophisticated instruments are needed, e.g., high voltage electron microscopes equipped with precise goniometers that work at low temperature and digital cameras of high sensitivity and pixel number. With them, it is possible to generate high resolution tomograms, i.e., 3D views of subcellular structures. This review describes theory and applications of the high pressure cryofixation methodology and compares its results with those of conventional procedures. Moreover, recent findings will be discussed showing that molecular models of proteins can be fitted into depicted organellar ultrastructure of images of frozen hydrated sections. High pressure freezing of tissue is the base which may lead to precise models of macromolecular assemblies in situ, and thus to a better understanding of the function of complex cellular structures.