35 resultados para Long-range edge percolation model
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Brain activity relies on transient, fluctuating interactions between segregated neuronal populations. Synchronization within a single and between distributed neuronal clusters reflects the dynamics of these cooperative patterns. Thus absence epilepsy can be used as a model for integrated, large-scale investigation of the emergence of pathological collective dynamics in the brain. Indeed, spike-wave discharges (SWD) of an absence seizure are thought to reflect abnormal cortical hypersynchronization. In this paper, we address two questions: how and where do SWD arise in the human brain? Therefore, we explored the spatio-temporal dynamics of interactions within and between widely distributed cortical sites using magneto-encephalographic recordings of spontaneous absence seizures. We then extracted, from their time-frequency analysis, local synchronization of cortical sources and long-range synchronization linking distant sites. Our analyses revealed a reproducible sequence of 1) long-range desynchronization, 2) increased local synchronization and 3) increased long-range synchronization. Although both local and long-range synchronization displayed different spatio-temporal profiles, their cortical projection within an initiation time window overlap and reveal a multifocal fronto-central network. These observations contradict the classical view of sudden generalized synchronous activities in absence epilepsy. Furthermore, they suggest that brain states transition may rely on multi-scale processes involving both local and distant interactions.
Resumo:
Two-particle correlations in relative azimuthal angle (Delta phi) and pseudorapidity (Delta eta) are measured in root S-NN = 5.02 TeV p + Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 mu b(-1) of data as a function of transverse momentum (p(T)) and the transverse energy (Sigma E-T(Pb)) summed over 3.1 < eta < 4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2 < vertical bar Delta eta vertical bar < 5) "near-side" (Delta phi similar to 0) correlation that grows rapidly with increasing Sigma E-T(Pb). A long-range "away-side" (Delta phi similar to pi) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small Sigma E-T(Pb), is found to match the near-side correlation in magnitude, shape (in Delta eta and Delta phi) and Sigma E-T(Pb) dependence. The resultant Delta phi correlation is approximately symmetric about pi/2, and is consistent with a dominant cos2 Delta phi modulation for all Sigma E-T(Pb) ranges and particle p(T).
Resumo:
BACKGROUND: Control of breathing, heart rate, and body temperature are interdependent in infants, where instabilities in thermoregulation can contribute to apneas or even life-threatening events. Identifying abnormalities in thermoregulation is particularly important in the first 6 months of life, where autonomic regulation undergoes critical development. Fluctuations in body temperature have been shown to be sensitive to maturational stage as well as system failure in critically ill patients. We thus aimed to investigate the existence of fractal-like long-range correlations, indicative of temperature control, in night time rectal temperature (T(rec)) patterns in maturing infants. METHODOLOGY/PRINCIPAL FINDINGS: We measured T(rec) fluctuations in infants every 4 weeks from 4 to 20 weeks of age and before and after immunization. Long-range correlations in the temperature series were quantified by the correlation exponent, alpha using detrended fluctuation analysis. The effects of maturation, room temperature, and immunization on the strength of correlation were investigated. We found that T(rec) fluctuations exhibit fractal long-range correlations with a mean (SD) alpha of 1.51 (0.11), indicating that T(rec) is regulated in a highly correlated and hence deterministic manner. A significant increase in alpha with age from 1.42 (0.07) at 4 weeks to 1.58 (0.04) at 20 weeks reflects a change in long-range correlation behavior with maturation towards a smoother and more deterministic temperature regulation, potentially due to the decrease in surface area to body weight ratio in the maturing infant. alpha was not associated with mean room temperature or influenced by immunization CONCLUSIONS: This study shows that the quantification of long-range correlations using alpha derived from detrended fluctuation analysis is an observer-independent tool which can distinguish developmental stages of night time T(rec) pattern in young infants, reflective of maturation of the autonomic system. Detrended fluctuation analysis may prove useful for characterizing thermoregulation in premature and other infants at risk for life-threatening events.
Resumo:
Measurements of two-particle correlation functions and the first five azimuthal harmonics, v 1 to v 5 , are presented, using 28 nb −1 of p+Pb collisions at a nucleon-nucleon center-of-mass energy of √s NN=5.02 TeV measured with the ATLAS detector at the LHC. Significant long-range “ridgelike” correlations are observed for pairs with small relative azimuthal angle (|Δϕ|<π/3 ) and back-to-back pairs (|Δϕ|>2π/3 ) over the transverse momentum range 0.4
long-range correlations is Fourier decomposed to obtain the harmonics v n as a function of p T and event activity. The extracted v n values for n=2 to 5 decrease with n . The v 2 and v 3 values are found to be positive in the measured p T range. The v 1 is also measured as a function of p T and is observed to change sign around p T ≈1.5 –2.0 GeV and then increase to about 0.1 for p T >4 GeV. The v 2 (p T ) , v 3 (p T ) , and v 4 (p T ) are compared to the v n coefficients in Pb+Pb collisions at √s NN=2.76 TeV with similar event multiplicities. Reasonable agreement is observed after accounting for the difference in the average p T of particles produced in the two collision systems.
Resumo:
The intensity of long-range correlations observed with the classical HMBC pulse sequence using static optimization of the long-range coupling delay is directly related to the size of the coupling constant and is often set as a compromise. As such, some long-range correlations might appear with a reduced intensity or might even be completely absent from the spectra. After a short introduction, this third manuscript will give a detailed review of some selected HMBC variants dedicated to improve the detection of long-range correlations, such as the ACCORD-HMBC, CIGAR-HMBC, and Broadband HMBC experiments. Practical details about the accordion optimization, which affords a substantial improvement in both the number and intensity of the long-range correlations observed, but introduces a modulation in F1, will be discussed. The incorporation of the so-called constant time variable delay in the CIGAR-HMBC experiment, which can trigger or even completely suppress 1H–1H coupling modulation inherent to the utilization of the accordion principle, will be also discussed. The broadband HMBC scheme, which consists of recording a series of HMBC spectra with different delays set as a function of the long-range heteronuclear coupling constant ranges and transverse relaxation times T2, is also examined.
Resumo:
A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70% of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE chemistry transport models. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions constituted less than 20%in winter and 40%in summer of carbonaceous fine PM, unexpectedly small for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e., from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant, flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only being partially responsible for its own average and peak PM levels has important implications for air pollution regulation policies.
Resumo:
Ocean acidification might reduce the ability of calcifying plankton to produce and maintain their shells of calcite, or of aragonite, the more soluble form of CaCO3. In addition to possibly large biological impacts, reduced CaCO3 production corresponds to a negative feedback on atmospheric CO2. In order to explore the sensitivity of the ocean carbon cycle to increasing concentrations of atmospheric CO2, we use the new biogeochemical Bern3D/PISCES model. The model reproduces the large scale distributions of biogeochemical tracers. With a range of sensitivity studies, we explore the effect of (i) using different parameterizations of CaCO3 production fitted to available laboratory and field experiments, of (ii) letting calcite and aragonite be produced by auto- and heterotrophic plankton groups, and of (iii) using carbon emissions from the range of the most recent IPCC Representative Concentration Pathways (RCP). Under a high-emission scenario, the CaCO3 production of all the model versions decreases from ~1 Pg C yr−1 to between 0.36 and 0.82 Pg C yr−1 by the year 2100. The changes in CaCO3 production and dissolution resulting from ocean acidification provide only a small feedback on atmospheric CO2 of −1 to −11 ppm by the year 2100, despite the wide range of parameterizations, model versions and scenarios included in our study. A potential upper limit of the CO2-calcification/dissolution feedback of −30 ppm by the year 2100 is computed by setting calcification to zero after 2000 in a high 21st century emission scenario. The similarity of feedback estimates yielded by the model version with calcite produced by nanophytoplankton and the one with calcite, respectively aragonite produced by mesozooplankton suggests that expending biogeochemical models to calcifying zooplankton might not be needed to simulate biogeochemical impacts on the marine carbonate cycle. The changes in saturation state confirm previous studies indicating that future anthropogenic CO2 emissions may lead to irreversible changes in ΩA for several centuries. Furthermore, due to the long-term changes in the deep ocean, the ratio of open water CaCO3 dissolution to production stabilizes by the year 2500 at a value that is 30–50% higher than at pre-industrial times when carbon emissions are set to zero after 2100.
Resumo:
Asthma is an increasing health problem worldwide, but the long-term temporal pattern of clinical symptoms is not understood and predicting asthma episodes is not generally possible. We analyse the time series of peak expiratory flows, a standard measurement of airway function that has been assessed twice daily in a large asthmatic population during a long-term crossover clinical trial. Here we introduce an approach to predict the risk of worsening airflow obstruction by calculating the conditional probability that, given the current airway condition, a severe obstruction will occur within 30 days. We find that, compared with a placebo, a regular long-acting bronchodilator (salmeterol) that is widely used to improve asthma control decreases the risk of airway obstruction. Unexpectedly, however, a regular short-acting beta2-agonist bronchodilator (albuterol) increases this risk. Furthermore, we find that the time series of peak expiratory flows show long-range correlations that change significantly with disease severity, approaching a random process with increased variability in the most severe cases. Using a nonlinear stochastic model, we show that both the increased variability and the loss of correlations augment the risk of unstable airway function. The characterization of fluctuations in airway function provides a quantitative basis for objective risk prediction of asthma episodes and for evaluating the effectiveness of therapy.
Resumo:
AIM As technological interventions treating acute myocardial infarction (MI) improve, post-ischemic heart failure increasingly threatens patient health. The aim of the current study was to test whether FADD could be a potential target of gene therapy in the treatment of heart failure. METHODS Cardiomyocyte-specific FADD knockout mice along with non-transgenic littermates (NLC) were subjected to 30 minutes myocardial ischemia followed by 7 days of reperfusion or 6 weeks of permanent myocardial ischemia via the ligation of left main descending coronary artery. Cardiac function were evaluated by echocardiography and left ventricular (LV) catheterization and cardiomyocyte death was measured by Evans blue-TTC staining, TUNEL staining, and caspase-3, -8, and -9 activities. In vitro, H9C2 cells transfected with ether scramble siRNA or FADD siRNA were stressed with chelerythrin for 30 min and cleaved caspase-3 was assessed. RESULTS FADD expression was significantly decreased in FADD knockout mice compared to NLC. Ischemia/reperfusion (I/R) upregulated FADD expression in NLC mice, but not in FADD knockout mice at the early time. FADD deletion significantly attenuated I/R-induced cardiac dysfunction, decreased myocardial necrosis, and inhibited cardiomyocyte apoptosis. Furthermore, in 6 weeks long term permanent ischemia model, FADD deletion significantly reduced the infarct size (from 41.20 ± 3.90% in NLC to 26.83 ± 4.17% in FADD deletion), attenuated myocardial remodeling, improved cardiac function and improved survival. In vitro, FADD knockdown significantly reduced chelerythrin-induced the level of cleaved caspase-3. CONCLUSION Taken together, our results suggest FADD plays a critical role in post-ischemic heart failure. Inhibition of FADD retards heart failure progression. Our data supports the further investigation of FADD as a potential target for genetic manipulation in the treatment of heart failure.
Resumo:
The utility of the HMBC experiment for structure elucidation is unquestionable, but the nature of the coupling pathways leading to correlations in an HMBC experiment creates the potential for misinterpretation. This misinterpretation potential is intimately linked to the size of the long-range heteronuclear couplings involved, and may become troublesome in those cases of a particularly strong 2JCH correlation that might be mistaken for a 3JCH correlation or a 4JCH correlation of appreciable strength that could be mistaken for a weaker 3JCH correlation. To address these potential avenues of confusion, work from several laboratories has been focused on the development of what might be considered “coupling pathway edited” long-range heteronuclear correlation experiments that are derived from or related to the HMBC experiment. The first example of an effort to address the problems associated with correlation path length was seen in the heteronucleus-detected XCORFE experiment described by Reynolds and co-workers that predated the development of the HMBC experiment. Proton-detected analogs of the HMBC experiment intended to differentiate 2JCH correlations from nJCH correlations where n = 3, 4, include the 2J,3J-HMBC, HMBC-RELAY, H2BC, edited-HMBC, and HAT H2BC experiments. The principles underlying the critical components of each of these experiments are discussed and experimental verification of the results that can be obtained using model compounds are shown. This contribution concludes with a brief discussion of the 1,1-ADEQUATE experiments that provide an alternative means of identifying adjacent protonated and non-protonated carbon correlations by exploiting 1JCC correlations at natural abundance.
Resumo:
Phase locking or synchronization of brain areas is a key concept of information processing in the brain. Synchronous oscillations have been observed and investigated extensively in EEG during the past decades. EEG oscillations occur over a wide frequency range. In EEG, a prominent type of oscillations is alpha-band activity, present typically when a subject is awake, but at rest with closed eyes. The spectral power of alpha rhythms has recently been investigated in simultaneous EEG/fMRI recordings, establishing a wide-range cortico-thalamic network. However, spectral power and synchronization are different measures and little is known about the correlations between BOLD effects and EEG synchronization. Interestingly, the fMRI BOLD signal also displays synchronous oscillations across different brain regions. These oscillations delineate so-called resting state networks (RSNs) that resemble the correlation patterns of simultaneous EEG/fMRI recordings. However, the nature of these BOLD oscillations and their relations to EEG activity is still poorly understood. One hypothesis is that the subunits constituting a specific RSN may be coordinated by different EEG rhythms. In this study we report on evidence for this hypothesis. The BOLD correlates of global EEG synchronization (GFS) in the alpha frequency band are located in brain areas involved in specific RSNs, e.g. the 'default mode network'. Furthermore, our results confirm the hypothesis that specific RSNs are organized by long-range synchronization at least in the alpha frequency band. Finally, we could localize specific areas where the GFS BOLD correlates and the associated RSN overlap. Thus, we claim that not only the spectral dynamics of EEG are important, but also their spatio-temporal organization.