2 resultados para Long Cylinder

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autogenous iliac crest has long served as the gold standard for anterior lumbar arthrodesis although added morbidity results from the bone graft harvest. Therefore, femoral ring allograft, or cages, have been used to decrease the morbidity of iliac crest bone harvesting. More recently, an experimental study in the animal showed that harvesting local bone from the anterior vertebral body and replacing the void by a radio-opaque beta-tricalcium phosphate plug was a valid concept. However, such a concept precludes theoretically the use of posterior pedicle screw fixation. At one institution a consecutive series of 21 patients underwent single- or multiple-level circumferential lumbar fusion with anterior cages and posterior pedicle screws. All cages were filled with cancellous bone harvested from the adjacent vertebral body, and the vertebral body defect was filled with a beta-tricalcium phosphate plug. The indications for surgery were failed conservative treatment of a lumbar degenerative disc disease or spondylolisthesis. The purpose of this study, therefore, was to report on the surgical technique, operative feasibility, safety, benefits, and drawbacks of this technique with our primary clinical experience. An independent researcher reviewed all data that had been collected prospectively from the onset of the study. The average age of the patients was 39.9 (26-57) years. Bone grafts were successfully harvested from 28 vertebral bodies in all but one patient whose anterior procedure was aborted due to difficulty in freeing the left common iliac vein. This case was converted to a transforaminal interbody fusion (TLIF). There was no major vascular injury. Blood loss of the anterior procedure averaged 250 ml (50-350 ml). One tricalcium phosphate bone plug was broken during its insertion, and one endplate was broken because of wrong surgical technique, which did not affect the final outcome. One patient had a right lumbar plexopathy that was not related to this special technique. There was no retrograde ejaculation, infection or pseudoarthrosis. One patient experienced a deep venous thrombosis. At the last follow up (mean 28 months) all patients had a solid lumbar spine fusion. At the 6-month follow up, the pain as assessed on the visual analog scale (VAS) decreased from 6.9 to 4.5 (33% decrease), and the Oswestry disability index (ODI) reduced from 48.0 to 31.7 with a 34% reduction. However, at 2 years follow up there was a trend for increase in the ODI (35) and VAS (5). The data in this study suggest that harvesting a cylinder of autograft from the adjacent vertebral body is safe and efficient. Filling of the void defect with a beta-tricalcium phosphate plug does not preclude the use of posterior pedicle screw stabilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well known that gases adsorb on many surfaces, in particular metal surfaces. There are two main forms responsible for these effects (i) physisorption and (ii) chemisorption. Physisorption is associated with lower binding energies in the order of 1–10 kJ mol−¹, compared to chemisorption which ranges from 100 to 1000 kJ mol−¹. Furthermore, chemisorption only forms monolayers, contrasting physisorption that can form multilayer adsorption. The reverse process is called desorption and follows similar mathematical laws; however, it can be influenced by hysteresis effects. In the present experiment, we investigated the adsorption/desorption phenomena on three steel and three aluminium cylinders containing compressed air in our laboratory and under controlled conditions in a climate chamber, respectively. Our observations from completely decanting one steel and two aluminium cylinders are in agreement with the pressure dependence of physisorption for CO₂, CH₄, and H₂O. The CO₂ results for both cylinder types are in excellent agreement with the pressure dependence of a monolayer adsorption model. However, mole fraction changes due to adsorption on aluminium (< 0.05 and 0 ppm for CO₂ and H₂O) were significantly lower than on steel (< 0.41 ppm and about < 2.5 ppm, respectively). The CO₂ amount adsorbed (5.8 × 1019 CO₂ molecules) corresponds to about the fivefold monolayer adsorption, indicating that the effective surface exposed for adsorption is significantly larger than the geometric surface area. Adsorption/desorption effects were minimal for CH₄ and for CO but require further attention since they were only studied on one aluminium cylinder with a very low mole fraction. In the climate chamber, the cylinders were exposed to temperatures between −10 and +50 °C to determine the corresponding temperature coefficients of adsorption. Again, we found distinctly different values for CO₂, ranging from 0.0014 to 0.0184 ppm °C−¹ for steel cylinders and −0.0002 to −0.0003 ppm °C−¹ for aluminium cylinders. The reversed temperature dependence for aluminium cylinders points to significantly lower desorption energies than for steel cylinders and due to the small values, they might at least partly be influenced by temperature, permeation from/to sealing materials, and gas-consumption-induced pressure changes. Temperature coefficients for CH₄, CO, and H₂O adsorption were, within their error bands, insignificant. These results do indicate the need for careful selection and usage of gas cylinders for high-precision calibration purposes such as requested in trace gas applications.