38 resultados para Log-linear model
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In this paper, an Insulin Infusion Advisory System (IIAS) for Type 1 diabetes patients, which use insulin pumps for the Continuous Subcutaneous Insulin Infusion (CSII) is presented. The purpose of the system is to estimate the appropriate insulin infusion rates. The system is based on a Non-Linear Model Predictive Controller (NMPC) which uses a hybrid model. The model comprises a Compartmental Model (CM), which simulates the absorption of the glucose to the blood due to meal intakes, and a Neural Network (NN), which simulates the glucose-insulin kinetics. The NN is a Recurrent NN (RNN) trained with the Real Time Recurrent Learning (RTRL) algorithm. The output of the model consists of short term glucose predictions and provides input to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. For the development and the evaluation of the IIAS, data generated from a Mathematical Model (MM) of a Type 1 diabetes patient have been used. The proposed control strategy is evaluated at multiple meal disturbances, various noise levels and additional time delays. The results indicate that the implemented IIAS is capable of handling multiple meals, which correspond to realistic meal profiles, large noise levels and time delays.
Resumo:
Indoor radon is regularly measured in Switzerland. However, a nationwide model to predict residential radon levels has not been developed. The aim of this study was to develop a prediction model to assess indoor radon concentrations in Switzerland. The model was based on 44,631 measurements from the nationwide Swiss radon database collected between 1994 and 2004. Of these, 80% randomly selected measurements were used for model development and the remaining 20% for an independent model validation. A multivariable log-linear regression model was fitted and relevant predictors selected according to evidence from the literature, the adjusted R², the Akaike's information criterion (AIC), and the Bayesian information criterion (BIC). The prediction model was evaluated by calculating Spearman rank correlation between measured and predicted values. Additionally, the predicted values were categorised into three categories (50th, 50th-90th and 90th percentile) and compared with measured categories using a weighted Kappa statistic. The most relevant predictors for indoor radon levels were tectonic units and year of construction of the building, followed by soil texture, degree of urbanisation, floor of the building where the measurement was taken and housing type (P-values <0.001 for all). Mean predicted radon values (geometric mean) were 66 Bq/m³ (interquartile range 40-111 Bq/m³) in the lowest exposure category, 126 Bq/m³ (69-215 Bq/m³) in the medium category, and 219 Bq/m³ (108-427 Bq/m³) in the highest category. Spearman correlation between predictions and measurements was 0.45 (95%-CI: 0.44; 0.46) for the development dataset and 0.44 (95%-CI: 0.42; 0.46) for the validation dataset. Kappa coefficients were 0.31 for the development and 0.30 for the validation dataset, respectively. The model explained 20% overall variability (adjusted R²). In conclusion, this residential radon prediction model, based on a large number of measurements, was demonstrated to be robust through validation with an independent dataset. The model is appropriate for predicting radon level exposure of the Swiss population in epidemiological research. Nevertheless, some exposure misclassification and regression to the mean is unavoidable and should be taken into account in future applications of the model.
Resumo:
BACKGROUND: First investigations of the interactions between weather and the incidence of acute myocardial infarctions date back to 1938. The early observation of a higher incidence of myocardial infarctions in the cold season could be confirmed in very different geographical regions and cohorts. While the influence of seasonal variations on the incidence of myocardial infarctions has been extensively documented, the impact of individual meteorological parameters on the disease has so far not been investigated systematically. Hence the present study intended to assess the impact of the essential variables of weather and climate on the incidence of myocardial infarctions. METHODS: The daily incidence of myocardial infarctions was calculated from a national hospitalization survey. The hourly weather and climate data were provided by the database of the national weather forecast. The epidemiological and meteorological data were correlated by multivariate analysis based on a generalized linear model assuming a log-link-function and a Poisson distribution. RESULTS: High ambient pressure, high pressure gradients, and heavy wind activity were associated with an increase in the incidence of the totally 6560 hospitalizations for myocardial infarction irrespective of the geographical region. Snow- and rainfall had inconsistent effects. Temperature, Foehn, and lightning showed no statistically significant impact. CONCLUSIONS: Ambient pressure, pressure gradient, and wind activity had a statistical impact on the incidence of myocardial infarctions in Switzerland from 1990 to 1994. To establish a cause-and-effect relationship more data are needed on the interaction between the pathophysiological mechanisms of the acute coronary syndrome and weather and climate variables.
Resumo:
Objective: There is an ongoing debate concerning how outcome variables change during the course of psychotherapy. We compared the dose–effect model, which posits diminishing effects of additional sessions in later treatment phases, against a model that assumes a linear and steady treatment progress through termination. Method: Session-by-session outcome data of 6,375 outpatients were analyzed, and participants were categorized according to treatment length. Linear and log-linear (i.e., negatively accelerating) latent growth curve models (LGCMs) were estimated and compared for different treatment length categories. Results: When comparing the fit of the various models, the log-linear LGCMs assuming negatively accelerating treatment progress consistently outperformed the linear models irre- spective of treatment duration. The rate of change was found to be inversely related to the length of treatment. Conclusion: As proposed by the dose–effect model, the expected course of improvement in psychotherapy appears to follow a negatively accelerated pattern of change, irrespective of the duration of the treatment. However, our results also suggest that the rate of change is not constant across various treatment lengths. As proposed by the “good enough level” model, longer treatments are associated with less rapid rates of change.
Resumo:
BACKGROUND Genome-wide association studies have linked CYP17A1 coding for the steroid hormone synthesizing enzyme 17α-hydroxylase (CYP17A1) to blood pressure (BP). We hypothesized that the genetic signal may translate into a correlation of ambulatory BP (ABP) with apparent CYP17A1 activity in a family-based population study and estimated the heritability of CYP17A1 activity. METHODS In the Swiss Kidney Project on Genes in Hypertension, day and night urinary excretions of steroid hormone metabolites were measured in 518 participants (220 men, 298 women), randomly selected from the general population. CYP17A1 activity was assessed by 2 ratios of urinary steroid metabolites: one estimating the combined 17α-hydroxylase/17,20-lyase activity (ratio 1) and the other predominantly 17α-hydroxylase activity (ratio 2). A mixed linear model was used to investigate the association of ABP with log-transformed CYP17A1 activities exploring effect modification by urinary sodium excretion. RESULTS Daytime ABP was positively associated with ratio 1 under conditions of high, but not low urinary sodium excretion (P interaction <0.05). Ratio 2 was not associated with ABP. Heritability estimates (SE) for day and night CYP17A1 activities were 0.39 (0.10) and 0.40 (0.09) for ratio 1, and 0.71 (0.09) and 0.55 (0.09) for ratio 2 (P values <0.001). CYP17A1 activities, assessed with ratio 1, were lower in older participants. CONCLUSIONS Low apparent CYP17A1 activity (assessed with ratio 1) is associated with elevated daytime ABP when salt intake is high. CYP17A1 activity is heritable and diminished in the elderly. These observations highlight the modifying effect of salt intake on the association of CYP17A1 with BP.
Resumo:
PURPOSE: Tumor stage and nuclear grade are the most important prognostic parameters of clear cell renal cell carcinoma (ccRCC). The progression risk of ccRCC remains difficult to predict particularly for tumors with organ-confined stage and intermediate differentiation grade. Elucidating molecular pathways deregulated in ccRCC may point to novel prognostic parameters that facilitate planning of therapeutic approaches. EXPERIMENTAL DESIGN: Using tissue microarrays, expression patterns of 15 different proteins were evaluated in over 800 ccRCC patients to analyze pathways reported to be physiologically controlled by the tumor suppressors von Hippel-Lindau protein and phosphatase and tensin homologue (PTEN). Tumor staging and grading were improved by performing variable selection using Cox regression and a recursive bootstrap elimination scheme. RESULTS: Patients with pT2 and pT3 tumors that were p27 and CAIX positive had a better outcome than those with all remaining marker combinations. A prolonged survival among patients with intermediate grade (grade 2) correlated with both nuclear p27 and cytoplasmic PTEN expression, as well as with inactive, nonphosphorylated ribosomal protein S6. By applying graphical log-linear modeling for over 700 ccRCC for which the molecular parameters were available, only a weak conditional dependence existed between the expression of p27, PTEN, CAIX, and p-S6, suggesting that the dysregulation of several independent pathways are crucial for tumor progression. CONCLUSIONS: The use of recursive bootstrap elimination, as well as graphical log-linear modeling for comprehensive tissue microarray (TMA) data analysis allows the unraveling of complex molecular contexts and may improve predictive evaluations for patients with advanced renal cancer.
Resumo:
Background: Body mass index (BMI) is a risk factor for endometrial cancer. We quantified the risk and investigated whether the association differed by use of hormone replacement therapy (HRT), menopausal status, and histologic type. Methods: We searched MEDLINE and EMBASE (1966 to December 2009) to identify prospective studies of BMI and incident endometrial cancer. We did random-effects meta-analyses, meta-regressions, and generalized least square regressions for trend estimations assuming linear, and piecewise linear, relationships. Results: Twenty-four studies (17,710 cases) were analyzed; 9 studies contributed to analyses by HRT, menopausal status, or histologic type, all published since 2003. In the linear model, the overall risk ratio (RR) per 5 kg/m2 increase in BMI was 1.60 (95% CI, 1.52–1.68), P < 0.0001. In the piecewise model, RRs compared with a normal BMI were 1.22 (1.19–1.24), 2.09 (1.94–2.26), 4.36 (3.75–5.10), and 9.11 (7.26–11.51) for BMIs of 27, 32, 37, and 42 kg/m2, respectively. The association was stronger in never HRT users than in ever users: RRs were 1.90 (1.57–2.31) and 1.18 (95% CI, 1.06–1.31) with P for interaction ¼ 0.003. In the piecewise model, the RR in never users was 20.70 (8.28–51.84) at BMI 42 kg/m2, compared with never users at normal BMI. The association was not affected by menopausal status (P ¼ 0.34) or histologic type (P ¼ 0.26). Conclusions: HRT use modifies the BMI-endometrial cancer risk association. Impact: These findings support the hypothesis that hyperestrogenia is an important mechanism underlying the BMI-endometrial cancer association, whilst the presence of residual risk in HRT users points to the role of additional systems. Cancer Epidemiol Biomarkers Prev; 19(12); 3119–30.
Resumo:
Altered structural connectivity is a key finding in schizophrenia, but the meaning of white matter alterations for behavior is rarely studied. In healthy subjects, motor activity correlated with white matter integrity in motor tracts. To explore the relation of motor activity and fractional anisotropy (FA) in schizophrenia, we investigated 19 schizophrenia patients and 24 healthy control subjects using Diffusion Tensor Imaging (DTI) and actigraphy on the same day. Schizophrenia patients had lower activity levels (AL). In both groups linear relations of AL and FA were detected in several brain regions. Schizophrenia patients had lower FA values in prefrontal and left temporal clusters. Furthermore, using a general linear model, we found linear negative associations of FA and AL underneath the right supplemental motor area (SMA), the right precentral gyrus and posterior cingulum in patients. This effect within the SMA was not seen in controls. This association in schizophrenia patients may contribute to the well known dysfunctions of motor control. Thus, structural disconnectivity could lead to disturbed motor behavior in schizophrenia.
Resumo:
In the present multi-modal study we aimed to investigate the role of visual exploration in relation to the neuronal activity and performance during visuospatial processing. To this end, event related functional magnetic resonance imaging er-fMRI was combined with simultaneous eye tracking recording and transcranial magnetic stimulation (TMS). Two groups of twenty healthy subjects each performed an angle discrimination task with different levels of difficulty during er-fMRI. The number of fixations as a measure of visual exploration effort was chosen to predict blood oxygen level-dependent (BOLD) signal changes using the general linear model (GLM). Without TMS, a positive linear relationship between the visual exploration effort and the BOLD signal was found in a bilateral fronto-parietal cortical network, indicating that these regions reflect the increased number of fixations and the higher brain activity due to higher task demands. Furthermore, the relationship found between the number of fixations and the performance demonstrates the relevance of visual exploration for visuospatial task solving. In the TMS group, offline theta bursts TMS (TBS) was applied over the right posterior parietal cortex (PPC) before the fMRI experiment started. Compared to controls, TBS led to a reduced correlation between visual exploration and BOLD signal change in regions of the fronto-parietal network of the right hemisphere, indicating a disruption of the network. In contrast, an increased correlation was found in regions of the left hemisphere, suggesting an intent to compensate functionality of the disturbed areas. TBS led to fewer fixations and faster response time while keeping accuracy at the same level, indicating that subjects explored more than actually needed.
Resumo:
Primate multisensory object perception involves distributed brain regions. To investigate the network character of these regions of the human brain, we applied data-driven group spatial independent component analysis (ICA) to a functional magnetic resonance imaging (fMRI) data set acquired during a passive audio-visual (AV) experiment with common object stimuli. We labeled three group-level independent component (IC) maps as auditory (A), visual (V), and AV, based on their spatial layouts and activation time courses. The overlap between these IC maps served as definition of a distributed network of multisensory candidate regions including superior temporal, ventral occipito-temporal, posterior parietal and prefrontal regions. During an independent second fMRI experiment, we explicitly tested their involvement in AV integration. Activations in nine out of these twelve regions met the max-criterion (A < AV > V) for multisensory integration. Comparison of this approach with a general linear model-based region-of-interest definition revealed its complementary value for multisensory neuroimaging. In conclusion, we estimated functional networks of uni- and multisensory functional connectivity from one dataset and validated their functional roles in an independent dataset. These findings demonstrate the particular value of ICA for multisensory neuroimaging research and using independent datasets to test hypotheses generated from a data-driven analysis.
Resumo:
Liver tissue was collected from eight random dairy cows at a slaughterhouse to test if gene expression of pyruvate carboxylase (PC), mitochondrial phosphoenolpyruvate carboxykinase (PEPCKm) and cytosolic phosphoenolpyruvate carboxykinase (PEPCKc) is different at different locations in the liver. Obtained liver samples were analysed for mRNA expression levels of PC, PEPCKc and PEPCKm and subjected to the MIXED procedure of SAS to test for the sampled locations with cow liver as repeated subject. Additionally, the general linear model procedure (GLM) for analysis of variance was applied to test for significant differences for mRNA abundance of PEPCKm, PEPCKc and bPC between the livers. In conclusion, this study demonstrated that mRNA abundance of PC, PEPCKc and PEPCKm is not different between locations in the liver but may differ between individual cows.
Resumo:
Searching for the neural correlates of visuospatial processing using functional magnetic resonance imaging (fMRI) is usually done in an event-related framework of cognitive subtraction, applying a paradigm comprising visuospatial cognitive components and a corresponding control task. Besides methodological caveats of the cognitive subtraction approach, the standard general linear model with fixed hemodynamic response predictors bears the risk of being underspecified. It does not take into account the variability of the blood oxygen level-dependent signal response due to variable task demand and performance on the level of each single trial. This underspecification may result in reduced sensitivity regarding the identification of task-related brain regions. In a rapid event-related fMRI study, we used an extended general linear model including single-trial reaction-time-dependent hemodynamic response predictors for the analysis of an angle discrimination task. In addition to the already known regions in superior and inferior parietal lobule, mapping the reaction-time-dependent hemodynamic response predictor revealed a more specific network including task demand-dependent regions not being detectable using the cognitive subtraction method, such as bilateral caudate nucleus and insula, right inferior frontal gyrus and left precentral gyrus.
Resumo:
Mild cognitive impairment (MCI) often refers to the preclinical stage of dementia, where the majority develop Alzheimer's disease (AD). Given that neurodegenerative burden and compensatory mechanisms might exist before accepted clinical symptoms of AD are noticeable, the current prospective study aimed to investigate the functioning of brain regions in the visuospatial networks responsible for preclinical symptoms in AD using event-related functional magnetic resonance imaging (fMRI). Eighteen MCI patients were evaluated and clinically followed for approximately 3 years. Five progressed to AD (PMCI) and eight remained stable (SMCI). Thirteen age-, gender- and education-matched controls also participated. An angle discrimination task with varying task demands was used. Brain activation patterns as well as task demand-dependent and -independent signal changes between the groups were investigated by using an extended general linear model including individual performance (reaction time [RT]) of each single trial. Similar behavioral (RT and accuracy) responses were observed between MCI patients and controls. A network of bilateral activations, e.g. dorsal pathway, which increased linearly with increasing task demand, was engaged in all subjects. Compared with SMCI patients and controls, PMCI patients showed a stronger relation between task demand and brain activity in left superior parietal lobules (SPL) as well as a general task demand-independent increased activation in left precuneus. Altered brain function can be detected at a group level in individuals that progress to AD before changes occur at the behavioral level. Increased parietal activation in PMCI could reflect a reduced neuronal efficacy due to accumulating AD pathology and might predict future clinical decline in patients with MCI.
Resumo:
Neural correlates of electroencephalographic (EEG) alpha rhythm are poorly understood. Here, we related EEG alpha rhythm in awake humans to blood-oxygen-level-dependent (BOLD) signal change determined by functional magnetic resonance imaging (fMRI). Topographical EEG was recorded simultaneously with fMRI during an open versus closed eyes and an auditory stimulation versus silence condition. EEG was separated into spatial components of maximal temporal independence using independent component analysis. Alpha component amplitudes and stimulus conditions served as general linear model regressors of the fMRI signal time course. In both paradigms, EEG alpha component amplitudes were associated with BOLD signal decreases in occipital areas, but not in thalamus, when a standard BOLD response curve (maximum effect at approximately 6 s) was assumed. The part of the alpha regressor independent of the protocol condition, however, revealed significant positive thalamic and mesencephalic correlations with a mean time delay of approximately 2.5 s between EEG and BOLD signals. The inverse relationship between EEG alpha amplitude and BOLD signals in primary and secondary visual areas suggests that widespread thalamocortical synchronization is associated with decreased brain metabolism. While the temporal relationship of this association is consistent with metabolic changes occurring simultaneously with changes in the alpha rhythm, sites in the medial thalamus and in the anterior midbrain were found to correlate with short time lag. Assuming a canonical hemodynamic response function, this finding is indicative of activity preceding the actual EEG change by some seconds.
Resumo:
Background: The goal of this study was to determine whether site-specific differences in the subgingival microbiota could be detected by the checkerboard method in subjects with periodontitis. Methods: Subjects with at least six periodontal pockets with a probing depth (PD) between 5 and 7 mm were enrolled in the study. Subgingival plaque samples were collected with sterile curets by a single-stroke procedure at six selected periodontal sites from 161 subjects (966 subgingival sites). Subgingival bacterial samples were assayed with the checkerboard DNA-DNA hybridization method identifying 37 species. Results: Probing depths of 5, 6, and 7 mm were found at 50% (n = 483), 34% (n = 328), and 16% (n = 155) of sites, respectively. Statistical analysis failed to demonstrate differences in the sum of bacterial counts by tooth type (P = 0.18) or specific location of the sample (P = 0.78). With the exceptions of Campylobacter gracilis (P <0.001) and Actinomyces naeslundii (P <0.001), analysis by general linear model multivariate regression failed to identify subject or sample location factors as explanatory to microbiologic results. A trend of difference in bacterial load by tooth type was found for Prevotella nigrescens (P <0.01). At a cutoff level of >/=1.0 x 10(5), Porphyromonas gingivalis and Tannerella forsythia (previously T. forsythensis) were present at 48.0% to 56.3% and 46.0% to 51.2% of sampled sites, respectively. Conclusions: Given the similarities in the clinical evidence of periodontitis, the presence and levels of 37 species commonly studied in periodontitis are similar, with no differences between molar, premolar, and incisor/cuspid subgingival sites. This may facilitate microbiologic sampling strategies in subjects during periodontal therapy.