13 resultados para Locomotor activity rhythm
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A central focus of invasion biology is to identify the traits that predict which introduced species will become invasive. Behavioral traits related to locomotor activity most likely play a pivotal role in determining a species’invasion success but have rarely been studied, particularly in terrestrial invertebrates. Here, we experimentally investigated the small-scale locomotor activity of two slug species with divergent invasion success in Europe, the highly invasive slug, Arion lusitanicus, and the closely related, non-invasive and native slug, Arion rufus. To do so, we used a multi-state capture-mark-recapture approach, and hypothesized that the invasive slug has a higher moving rate (keeps on moving) and leaving rate (leaves more frequently known places). A total of 221 invasive and 241 non-invasive slugs were individually marked using magnetic transponders and released in three study sites differing in habitat type. The slugs were recaptured using shelter traps, and moving and leaving rates were estimated. Both rates were significantly higher for the invasive slug, demonstrating a higher locomotor activity which might partly explain its invasion success. Our results provide evidence for the recently suggested idea that locomotor activity might be an important trait underlying animal invasions using for the first time terrestrial invertebrates.
Resumo:
BACKGROUND In Parkinson's disease (PD), bradykinesia, or slowness of movement, only appears after a large striatal dopamine depletion. Compensatory mechanisms probably play a role in this delayed appearance of symptoms. OBJECTIVE Our hypothesis is that the striatal direct and indirect pathways participate in these compensatory mechanisms. METHODS We used the unilateral 6-hydroxydopamine (6-OHDA) rat model of PD and control animals. Four weeks after the lesion, the spontaneous locomotor activity of the rats was measured and then the animals were killed and their brain extracted. We quantified the mRNA expression of markers of the striatal direct and indirect pathways as well as the nigral expression of dopamine transporter (DAT) and tyrosine hydroxylase (TH) mRNA. We also carried out an immunohistochemistry for the striatal TH protein expression. RESULTS As expected, the unilateral 6-OHDA rats presented a tendency to an ipsilateral head turning and a low locomotor velocity. In 6-OHDA rats only, we observed a significant and positive correlation between locomotor velocity and both D1-class dopamine receptor (D1R) (direct pathway) and enkephalin (ENK) (indirect pathway) mRNA in the lesioned striatum, as well as between D1R and ENK mRNA. CONCLUSIONS Our results demonstrate a strong relationship between both direct and indirect pathways and spontaneous locomotor activity in the parkinsonian rat model. We suggest a synergy between both pathways which could play a role in compensatory mechanisms and may contribute to the delayed appearance of bradykinesia in PD.
Resumo:
Adenosine A2A receptors are present on enkephalinergic medium sized striatal neurons in the rat and have an important function in the modulation of striatal output. In order to establish more accurately whether adenosine transmission is a generalized phenomenon in mammalian striatum we compared the A2A R expression in the mouse, rat, cat and human striatum. Secondly we compared the modulation of enkephalin gene expression and A2A receptor gene expression in rat striatal neurons after 6-OH-dopamine lesion of the substantia nigra. Hybridization histochemistry was performed with a 35S-labelled radioactive oligonucleotide probe. The results showed high expression of A2A adenosine receptor genes only in the medium-sized cells of the striatum in all examined species. In the rat striatum, expression of A2A receptors was not significantly altered after lesion of the dopaminergic pathways with 6-OH-dopamine even though enkephalin gene expression was up-regulated. The absence of a change in A2A receptor gene expression after 6-OH-dopamine treatment speaks against a dependency on dopaminergic innervation. The maintained inhibitory function of A2A R on motor activity in spite of dopamine depletion could be partly responsible for the depression of locomotor activity observed in basal ganglia disorders such as Parkinson's disease.
Resumo:
The T-cell derived cytokine CD40 ligand is overexpressed in patients with autoimmune diseases. Through activation of its receptor, CD40 ligand leads to a tumor necrosis factor (TNF) receptor 1 (TNFR1) dependent impairment of locomotor activity in mice. Here we report that this effect is explained through a promotion of sleep, which was specific to non-rapid eye movement (NREM) sleep while REM sleep was suppressed. The increase in NREM sleep was accompanied by a decrease in EEG delta power during NREM sleep and by a decrease in the expression of transcripts in the cerebral cortex known to be associated with homeostatic sleep drive, such as Homer1a, Early growth response 2, Neuronal pentraxin 2, and Fos-like antigen 2. The effect of CD40 activation was mimicked by peripheral TNF injection and prevented by the TNF blocker etanercept. Our study indicates that sleep-wake dysregulation in autoimmune diseases may result from CD40 induced TNF:TNFR1 mediated alterations of molecular pathways, which regulate sleep-wake behavior.
Resumo:
OBJECTIVE To elicit and evaluate the NWR (nociceptive withdrawal reflex) in 2 and 11 day old foals, to investigate if buprenorphine causes antinociception and determine if the NWR response changes with increasing age. The effect of buprenorphine on behaviour was also evaluated. STUDY DESIGN Prospective, experimental cross-over trial. ANIMALS Nine Norwegian Fjord research foals. METHODS Buprenorphine, 10 μg kg(-1) was administered intramuscularly (IM) to the same foal at 2 days and at 11 days of age. The NWR and the effect of buprenorphine were evaluated by electromyograms recorded from the left deltoid muscle following electrical stimulation of the left lateral palmar nerve at the level of the pastern. Mentation, locomotor activity and respiratory rate were recorded before and after buprenorphine administration. RESULTS We were able to evoke the NWR and temporal summation in foals using this model. Buprenorphine decreased the root mean square amplitude following single electrical stimulation (p < 0.001) in both age groups, and increased the NWR threshold following single electrical stimulation in 2 day old foals (p = 0.0012). Repeated electrical stimulation at 2 Hz was more effective to elicit temporal summation compared to 5 Hz (p < 0.001). No effect of age upon the NWR threshold was found (p = 0.34). Sedation when left undisturbed (11 occasions), increased locomotor activity when handled (9 occasions) and tachypnea (13 occasions) were common side-effects of buprenorphine. CONCLUSION AND CLINICAL RELEVANCE These findings indicate that buprenorphine has antinociceptive effect in foals. Opioid side effects often recognized in adult horses also occur in foals.
Resumo:
Activities of daily living (ADL) are important for quality of life. They are indicators of cognitive health status and their assessment is a measure of independence in everyday living. ADL are difficult to reliably assess using questionnaires due to self-reporting biases. Various sensor-based (wearable, in-home, intrusive) systems have been proposed to successfully recognize and quantify ADL without relying on self-reporting. New classifiers required to classify sensor data are on the rise. We propose two ad-hoc classifiers that are based only on non-intrusive sensor data. METHODS: A wireless sensor system with ten sensor boxes was installed in the home of ten healthy subjects to collect ambient data over a duration of 20 consecutive days. A handheld protocol device and a paper logbook were also provided to the subjects. Eight ADL were selected for recognition. We developed two ad-hoc ADL classifiers, namely the rule based forward chaining inference engine (RBI) classifier and the circadian activity rhythm (CAR) classifier. The RBI classifier finds facts in data and matches them against the rules. The CAR classifier works within a framework to automatically rate routine activities to detect regular repeating patterns of behavior. For comparison, two state-of-the-art [Naïves Bayes (NB), Random Forest (RF)] classifiers have also been used. All classifiers were validated with the collected data sets for classification and recognition of the eight specific ADL. RESULTS: Out of a total of 1,373 ADL, the RBI classifier correctly determined 1,264, while missing 109 and the CAR determined 1,305 while missing 68 ADL. The RBI and CAR classifier recognized activities with an average sensitivity of 91.27 and 94.36%, respectively, outperforming both RF and NB. CONCLUSIONS: The performance of the classifiers varied significantly and shows that the classifier plays an important role in ADL recognition. Both RBI and CAR classifier performed better than existing state-of-the-art (NB, RF) on all ADL. Of the two ad-hoc classifiers, the CAR classifier was more accurate and is likely to be better suited than the RBI for distinguishing and recognizing complex ADL.
Resumo:
To investigate the hypothesis that day/night patterns of prothrombotic activity differ between patients with obstructive sleep apnea (OSA) and individuals with no OSA.
Resumo:
Music is capable of inducing emotional arousal. While previous studies used brief musical excerpts to induce one specific emotion, the current study aimed to identify the physiological correlates of continuous changes in subjective emotional states while listening to a complete music piece. A total of 19 participants listened to the first movement of Ludwig van Beethoven's 5th symphony (duration: ~7.4 min), during which a continuous 76-channel EEG was recorded. In a second session, the subjects evaluated their emotional arousal during the listening. A fast fourier transform was performed and covariance maps of spectral power were computed in association with the subjective arousal ratings. Subjective arousal ratings had good inter-individual correlations. Covariance maps showed a right-frontal suppression of lower alpha-band activity during high arousal. The results indicate that music is a powerful arousal-modulating stimulus. The temporal dynamics of the piece are well suited for sequential analysis, and could be necessary in helping unfold the full emotional power of music.
Resumo:
Neural correlates of electroencephalographic (EEG) alpha rhythm are poorly understood. Here, we related EEG alpha rhythm in awake humans to blood-oxygen-level-dependent (BOLD) signal change determined by functional magnetic resonance imaging (fMRI). Topographical EEG was recorded simultaneously with fMRI during an open versus closed eyes and an auditory stimulation versus silence condition. EEG was separated into spatial components of maximal temporal independence using independent component analysis. Alpha component amplitudes and stimulus conditions served as general linear model regressors of the fMRI signal time course. In both paradigms, EEG alpha component amplitudes were associated with BOLD signal decreases in occipital areas, but not in thalamus, when a standard BOLD response curve (maximum effect at approximately 6 s) was assumed. The part of the alpha regressor independent of the protocol condition, however, revealed significant positive thalamic and mesencephalic correlations with a mean time delay of approximately 2.5 s between EEG and BOLD signals. The inverse relationship between EEG alpha amplitude and BOLD signals in primary and secondary visual areas suggests that widespread thalamocortical synchronization is associated with decreased brain metabolism. While the temporal relationship of this association is consistent with metabolic changes occurring simultaneously with changes in the alpha rhythm, sites in the medial thalamus and in the anterior midbrain were found to correlate with short time lag. Assuming a canonical hemodynamic response function, this finding is indicative of activity preceding the actual EEG change by some seconds.
Resumo:
The generation of rhythmic electrical activity is a prominent feature of spinal cord circuits that is used for locomotion and also for circuit refinement during development. The mechanisms involved in rhythm generation in spinal cord networks are not fully understood. It is for example not known whether spinal cord rhythms are driven by pacemaker neurons and if yes, which neurons are involved in this function. We studied the mechanisms involved in rhythm generation in slice cultures from fetal rats that were grown on multielectrode arrays (MEAs). We combined multisite extracellular recordings from the MEA electrodes with intracellular patch clamp recordings from single neurons. We found that spatially restricted oscillations of activity appeared in most of the cultures spontaneously. Such activity was based on intrinsic activity in a percentage of the neurons that could activate the spinal networks through recurrent excitation. The local oscillator networks critically involved NMDA, AMPA and GABA / glycine receptors at subsequent phases of the oscillation cycle. Intrinsic spiking in individual neurons (in the absence of functional synaptic coupling) was based on persistent sodium currents. Intrinsic firing as well as persistent sodium currents were increased by 5-HT through 5-HT2 receptors. Comparing neuronal activity to muscle activity in co-cultures of spinal cord slices with muscle fibers we found that a percentage of the intrinsically spiking neurons were motoneurons. These motoneurons were electrically coupled among each other and they could drive the spinal networks through cholinergic recurrent excitation. These findings open the possibility that during development rhythmic activity in motoneurons is not only involved in circuit refinement downstream at the neuromuscular endplates but also upstream at the level of spinal cord circuits.
Resumo:
BACKGROUND: The authors have shown that rats can be retrained to swim after a moderately severe thoracic spinal cord contusion. They also found that improvements in body position and hindlimb activity occurred rapidly over the first 2 weeks of training, reaching a plateau by week 4. Overground walking was not influenced by swim training, suggesting that swimming may be a task-specific model of locomotor retraining. OBJECTIVE: To provide a quantitative description of hindlimb movements of uninjured adult rats during swimming, and then after injury and retraining. METHODS: The authors used a novel and streamlined kinematic assessment of swimming in which each limb is described in 2 dimensions, as 3 segments and 2 angles. RESULTS: The kinematics of uninjured rats do not change over 4 weeks of daily swimming, suggesting that acclimatization does not involve refinements in hindlimb movement. After spinal cord injury, retraining involved increases in hindlimb excursion and improved limb position, but the velocity of the movements remained slow. CONCLUSION: These data suggest that the activity pattern of swimming is hardwired in the rat spinal cord. After spinal cord injury, repetition is sufficient to bring about significant improvements in the pattern of hindlimb movement but does not improve the forces generated, leaving the animals with persistent deficits. These data support the concept that force (load) and pattern generation (recruitment) are independent and may have to be managed together with respect to postinjury rehabilitation.
Resumo:
OBJECTIVES The aim of this study was to analyze trigger activity in the long-term follow-up after left atrial (LA) linear ablation. BACKGROUND Interventional strategies for curative treatment of atrial fibrillation (AF) are targeted at the triggers and/or the maintaining substrate. After substrate modification using nonisolating linear lesions, the activity of triggers is unknown. METHODS With the LA linear lesion concept, 129 patients were treated using intraoperative ablation with minimal invasive surgical techniques. Contiguous radiofrequency energy-induced lesion lines involving the mitral annulus and the orifices of the pulmonary veins without isolation were placed under direct vision. RESULTS After a mean follow-up of 3.6 +/- 0.4 years, atrial ectopy, atrial runs, and reoccurrence of AF episodes were analyzed by digital 7-day electrocardiograms in 30 patients. Atrial ectopy was present in all patients. Atrial runs were present in 25 of 30 patients (83%), with a median number of 9 runs per patient/week (range 1 to 321) and a median duration of 1.2 s/run (range 0.7 to 25), without a significant difference in atrial ectopy and atrial runs between patients with former paroxysmal (n = 17) or persistent AF (n = 13). Overall, 87% of all patients were completely free from AF without antiarrhythmic drugs. CONCLUSIONS A detailed rhythm analysis late after specific LA linear lesion ablation shows that trigger activity remains relatively frequent but short and does not induce AF episodes in most patients. The long-term success rate of this concept is high in patients with paroxysmal or persistent AF.
Resumo:
In the genus Petunia, distinct pollination syndromes may have evolved in association with bee-visitation (P. integrifolia spp.) or hawk moth-visitation (P. axillaris spp). We investigated the extent of congruence between floral fragrance and olfactory perception of the hawk moth Manduca sexta. Hawk moth pollinated P. axillaris releases high levels of several compounds compared to the bee-pollinated P. integrifolia that releases benzaldehyde almost exclusively. The three dominating compounds in P. axillaris were benzaldehyde, benzyl alcohol and methyl benzoate. In P. axillaris, benzenoids showed a circadian rhythm with an emission peak at night, which was absent from P. integrifolia. These characters were highly conserved among different P. axillaris subspecies and P. axillaris accessions, with some differences in fragrance composition. Electroantennogram (EAG) recordings using flower-blends of different wild Petunia species on female M. sexta antennae showed that P. axillaris odours elicited stronger responses than P. integrifolia odours. EAG responses were highest to the three dominating compounds in the P. axillaris flower odours. Further, EAG responses to odour-samples collected from P. axillaris flowers confirmed that odours collected at night evoked stronger responses from M. sexta than odours collected during the day. These results show that timing of odour emissions by P. axillaris is in tune with nocturnal hawk moth activity and that flower-volatile composition is adapted to the antennal perception of these pollinators.