93 resultados para Liver and ethanol
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Visceral fat differs from subcutaneous fat by higher local inflammation and increased release of IL-6 and free fatty acids (FFA) which contribute to hepatic steatosis. IL-6 has been shown to upregulate the monocyte/macrophage specific receptor CD163 whose soluble form, sCD163, is increased in inflammatory diseases. Here, it was analyzed whether CD163 and sCD163 are differentially expressed in the human fat depots and fatty liver. CD163 mRNA and protein were similarly expressed in paired samples of human visceral and subcutaneous fat, and comparable levels in portal venous and systemic venous blood of liver-healthy controls indicate that release of sCD163 from visceral adipose tissue was not increased. CD163 was also similarly expressed in steatotic liver when compared to non-steatotic tissues and sCD163 was almost equal in the respective sera. Concentrations of sCD163 were not affected when passing the liver excluding substantial hepatic removal/release of this protein. A high concentration of IL-6 upregulated CD163 protein while physiological doses had no effect. However, sCD163 was not increased by any of the IL-6 doses tested. FFA even modestly decreased CD163 and sCD163. The anti-inflammatory mediators fenofibrate, pioglitazone, and eicosapentaenoic acid (EPA) did not influence sCD163 levels while CD163 was reduced by EPA. These data suggest that in humans neither visceral fat nor fatty liver are major sources of sCD163.
Resumo:
To assess the impact of topical anesthetic agents and ethanol on ocular surface wound healing using an ex vivo whole-globe porcine model.
Resumo:
The current study investigated the effects of supplementing rumen-protected choline (RPC) on metabolic profile, selected liver constituents and transcript levels of selected enzymes, transcription factors and nuclear receptors involved in mammary lipid metabolism in dairy goats. Eight healthy lactating goats were studied: four received no choline supplementation (CTR group) and four received 4g RPC chloride/day (RPC group). The treatment was administered individually starting 4 weeks before expected kidding and continuing for 4 weeks after parturition. In the first month of lactation, milk yield and composition were measured weekly. On days 7, 14, 21 and 27 of lactation, blood samples were collected and analysed for glucose, beta-hydroxybutyrate, non-esterified fatty acids and cholesterol. On day 28 of lactation, samples of liver and mammary gland tissue were obtained. Liver tissue was analysed for total lipid and DNA content; mammary tissue was analysed for transcripts of lipoprotein lipase (LPL), fatty acid synthase (FAS), sterol regulatory binding proteins 1 and 2, peroxisome proliferator-activated receptor gamma and liver X receptor alpha. Milk yield was very similar in the two groups, but R PC goats had lower (P < 0.05) plasma beta-hydroxybutyrate. The total lipid content of liver was unaffected (P = 0.890), but the total lipid/DNA ratio was lower (both P < 0.05) in RPC than CTR animals. Choline had no effect on the expression of the mammary gland transcripts involved in lipid metabolism. The current plasma and liver data indicate that choline has a positive effect on liver lipid metabolism, whereas it appears to have little effect on transcript levels in mammary gland of various proteins involved in lipid metabolism. Nevertheless, the current results were obtained from a limited number of animals, and choline requirement and function in lactating dairy ruminants deserve further investigation.
Resumo:
Abberrant DNA methylation is one of the hallmarks of cancerogenesis. Our study aims to delineate differential DNA methylation in cirrhosis and hepatic cancerogenesis. Patterns of methylation of 27,578 individual CpG loci in 12 hepatocellular carcinomas (HCCs), 15 cirrhotic controls and 12 normal liver samples were investigated using an array-based technology. A supervised principal component analysis (PCA) revealed 167 hypomethylated loci and 100 hypermethylated loci in cirrhosis and HCC as compared to normal controls. Thus, these loci show a "cirrhotic" methylation pattern that is maintained in HCC. In pairwise supervised PCAs between normal liver, cirrhosis and HCC, eight loci were significantly changed in all analyses differentiating the three groups (p < 0.0001). Of these, five loci showed highest methylation levels in HCC and lowest in control tissue (LOC55908, CELSR1, CRMP1, GNRH2, ALOX12 and ANGPTL7), whereas two loci showed the opposite direction of change (SPRR3 and TNFSF15). Genes hypermethylated between normal liver to cirrhosis, which maintain this methylation pattern during the development of HCC, are depleted for CpG islands, high CpG content promoters and polycomb repressive complex 2 (PRC2) targets in embryonic stem cells. In contrast, genes selectively hypermethylated in HCC as compared to nonmalignant samples showed an enrichment of CpG islands, high CpG content promoters and PRC2 target genes (p < 0.0001). Cirrhosis and HCC show distinct patterns of differential methylation with regards to promoter structure, PRC2 targets and CpG islands.
Resumo:
Growth and sexual development are closely interlinked in fish; however, no reports exist on potential effects of estrogen on the GH/IGF-I-axis in developing fish. We investigate whether estrogen exposure during early development affects growth and the IGF-I system, both at the systemic and tissue level. Tilapia were fed from 10 to 40 days post fertilization (DPF) with 17alpha-ethinylestradiol (EE(2)). At 50, 75, 90, and 165 DPF, length, weight, sex ratio, serum IGF-I (RIA), pituitary GH mRNA and IGF-I, and estrogen receptor alpha (ERalpha) mRNA in liver, gonads, brain, and gills (real-time PCR) were determined and the results correlated to those of in situ hybridization for IGF-I. Developmental exposure to EE(2) had persistent effects on sex ratio and growth. Serum IGF-I, hepatic IGF-I mRNA, and the number of IGF-I mRNA-containing hepatocytes were significantly decreased at 75 DPF, while liver ERalpha mRNA was significantly induced. At 75 DPF, a transient decline of IGF-I mRNA and a largely reduced number of IGF-I mRNA-containing neurons were observed in the female brain. In both sexes, pituitary GH mRNA was significantly suppressed. A transient downregulation of IGF-I mRNA occurred in ovaries (75 DPF) and testes (90 DPF). In agreement, in situ hybridization revealed less IGF-I mRNA signals in granulosa and germ cells. Our results show for the first time that developmental estrogen treatment impairs GH/IGF-I expression in fish, and that the effects persist. These long-lasting effects both seem to be exerted indirectly via inhibition of pituitary GH and directly by suppression of local IGF-I in organ-specific cells.
Resumo:
Neonates are particularly susceptible to malnutrition due to their limited reserves of micronutrients and their rapid growth. In the present study, we examined the effect of vitamin C deficiency on markers of oxidative stress in plasma, liver and brain of weanling guinea pigs. Vitamin C deficiency caused rapid and significant depletion of ascorbate (P < 0.001), tocopherols (P < 0.001) and glutathione (P < 0.001), and a decrease in superoxide dismutase activity (P = 0.005) in the liver, while protein oxidation was significantly increased (P = 0.011). No changes in lipid oxidation or oxidatively damaged DNA were observed in this tissue. In the brain, the pattern was markedly different. Of the measured antioxidants, only ascorbate was significantly depleted (P < 0.001), but in contrast to the liver, ascorbate oxidation (P = 0.034), lipid oxidation (P < 0.001), DNA oxidation (P = 0.13) and DNA incision repair (P = 0.014) were all increased, while protein oxidation decreased (P = 0.003). The results show that the selective preservation of brain ascorbate and induction of DNA repair in vitamin C-deficient weanling guinea pigs is not sufficient to prevent oxidative damage. Vitamin C deficiency may therefore be particularly adverse during the neonatal period.
Resumo:
AIM: This study was conducted to delineate partnership-relation functioning over time and specifically matched to various organs such as heart, liver, and kidney. METHOD: Prospective, paralleled case-control-study including patients and their respective partners before and one year after organ transplantation in 23 heart-transplant recipients, 19 liver-transplant patients, and 16 kidney-transplant recipients. To assess partnership functioning, the FB-Z (family assessment measure) of Cierpka and Frevert was used. Statistics included descriptive methods, correlations, and analysis of variance including the items "organ" and "time". RESULTS: Heart-transplant recipients and their partners show significant better overall measures in their partnership ratings (sum-value) in comparison to liver or kidney patients and their partners. In all patient and partner groups, except in kidney-transplant recipients a significant deterioration over time is discernible in the subscales role performance and emotionality. In respect to the item "organ" significant differences were found in overall functioning and the subscale communication where heart-transplant recipients and their partners have significant better functioning compared to kidney or liver transplant patients. In kidney patients and their partners only communication changes to the better in the time course. CONCLUSION: In any organ transplantation the two sides of the coin are important to bear in mind, the one is the live-saving act of transplantation as such, the other is the important distress in the phase before but equally after the operation, mainly in the first year where patients and their respective partners have to be followed and treated even in respect to psychosocial and marital functioning.
Resumo:
Extracellular nucleotides (e.g. ATP, UTP, ADP) are released by activated endothelium, leukocytes and platelets within the injured vasculature and bind specific cell-surface type-2 purinergic (P2) receptors. This process drives vascular inflammation and thrombosis within grafted organs. Importantly, there are also vascular ectonucleotidases i.e. ectoenzymes that hydrolyze extracellular nucleotides in the blood to generate nucleosides (viz. adenosine). Endothelial cell NTPDase1/CD39 has been shown to critically modulate levels of circulating nucleotides. This process tends to limit the activation of platelet and leukocyte expressed P2 receptors and also generates adenosine to reverse inflammatory events. This vascular protective CD39 activity is rapidly inhibited by oxidative reactions, such as is observed with liver ischemia reperfusion injury. In this review, we chiefly address the impact of these signaling cascades following liver transplantation. Interestingly, the hepatic vasculature, hepatocytes and all non-parenchymal cell types express several components co-ordinating the purinergic signaling response. With hepatic and vascular dysfunction, we note heightened P2- expression and alterations in ectonucleotidase expression and function that may predispose to progression of disease. In addition to documented impacts upon the vasculature during engraftment, extracellular nucleotides also have direct influences upon liver function and bile flow (both under physiological and pathological states). We have recently shown that alterations in purinergic signaling mediated by altered CD39 expression have major impacts upon hepatic metabolism, repair mechanisms, regeneration and associated immune responses. Future clinical applications in transplantation might involve new therapeutic modalities using soluble recombinant forms of CD39, altering expression of this ectonucleotidase by drugs and/or using small molecules to inhibit deleterious P2-mediated signaling while augmenting beneficial adenosine-mediated effects within the transplanted liver.
Resumo:
Stereoselectivity has to be considered for pharmacodynamic and pharmacokinetic features of ketamine. Stereoselective biotransformation of ketamine was investigated in equine microsomes in vitro. Concentration curves were constructed over time, and enzyme activity was determined for different substrate concentrations using equine liver and lung microsomes. The concentrations of R/S-ketamine and R/S-norketamine were determined by enantioselective capillary electrophoresis. A two-phase model based on Hill kinetics was used to analyze the biotransformation of R/S-ketamine into R/S-norketamine and, in a second step, into R/S-downstream metabolites. In liver and lung microsomes, levels of R-ketamine exceeded those of S-ketamine at all time points and S-norketamine exceeded R-norketamine at time points below the maximum concentration. In liver and lung microsomes, significant differences in the enzyme velocity (V(max)) were observed between S- and R-norketamine formation and between V(max) of S-norketamine formation when S-ketamine was compared to S-ketamine of the racemate. Our investigations in microsomal reactions in vitro suggest that stereoselective ketamine biotransformation in horses occurs in the liver and the lung with a slower elimination of S-ketamine in the presence of R-ketamine. Scaling of the in vitro parameters to liver and lung organ clearances provided an excellent fit with previously published in vivo data and confirmed a lung first-pass effect.
Resumo:
Methylation of cytosine residues at CpG sites is involved in various biological processes to control gene regulation and gene expression. Global DNA methylation is changed in different tumors and in cloned animals. Global DNA methylation can be accurately quantified by dot blot analysis with infrared (IR) fluorophores. Methylated lambda DNA was used as model DNA to develop and validate an immunochemical assay with IR fluorescence detection. Two different IR fluorophores were used, one to detect 5-methylcytosine and another to account for DNA loading. A sensitive infrared detection method was established which is suitable for accurate and reproducible quantification of global DNA methylation across a wide dynamic range. This method was subsequently employed to quantify global DNA methylation in liver and in muscle tissues of boars which have received either a control diet or a methyl supplemented diet in an ongoing study. A significant difference in global DNA methylation is indicated in muscle but not in liver tissue between the two groups of boars.
Resumo:
AIMS/HYPOTHESIS Ectopic lipids are fuel stores in non-adipose tissues (skeletal muscle [intramyocellular lipids; IMCL], liver [intrahepatocellular lipids; IHCL] and heart [intracardiomyocellular lipids; ICCL]). IMCL can be depleted by physical activity. Preliminary data suggest that aerobic exercise increases IHCL. Data on exercise-induced changes on ICCL is scarce. Increased IMCL and IHCL have been related to insulin resistance in skeletal muscles and liver, whereas this has not been documented in the heart. The aim of this study was to assess the acute effect of aerobic exercise on the flexibility of IMCL, IHCL and ICCL in insulin-sensitive participants in relation to fat availability, insulin sensitivity and exercise capacity. METHODS Healthy physically active men were included. [Formula: see text] was assessed by spiroergometry and insulin sensitivity was calculated using the HOMA index. Visceral and subcutaneous fat were separately quantified by MRI. Following a standardised dietary fat load over 3 days, IMCL, IHCL and ICCL were measured using MR spectroscopy before and after a 2 h exercise session at 50-60% of [Formula: see text]. Metabolites were measured during exercise. RESULTS Ten men (age 28.9 ± 6.4 years, mean ± SD; [Formula: see text] 56.3 ± 6.4 ml kg(-1) min(-1); BMI 22.75 ± 1.4 kg/m(2)) were recruited. A 2 h exercise session resulted in a significant decrease in IMCL (-17 ± 22%, p = 0.008) and ICCL (-17 ± 14%, p = 0.002) and increase in IHCL (42 ± 29%, p = 0.004). No significant correlations were found between the relative changes in ectopic lipids, fat availability, insulin sensitivity, exercise capacity or changes of metabolites during exercise. CONCLUSIONS/INTERPRETATION In this group, physical exercise decreased ICCL and IMCL but increased IHCL. Fat availability, insulin sensitivity, exercise capacity and metabolites during exercise are not the only factors affecting ectopic lipids during exercise.
Resumo:
Testosterone (TES) 6-β-hydroxylation is a significant metabolic step in the biotransformation of TES in human liver microsomes and reflects cytochrome P450 (CYP) 3A4/5 specific metabolic activity. Several CYP3A enzymes have been annotated in the horse genome, but functional characterization is missing. This descriptive study investigates TES metabolism in the horse liver in vitro and the qualitative contribution of three CYP3A isoforms of the horse. Metabolism of TES was investigated by using equine hepatocyte primary cultures and liver microsomes. Chemical inhibitors were used to determine the CYPs involved in TES biotransformation in equine microsomes. Single CYPs 3A89, 3A94, and 3A95, recombinantly expressed in V79 hamster lung fibroblasts, were incubated with TES and the fluorescent metabolite 7-benzyloxy-4-trifluoromethylcoumarin (BFC). The effect of ketoconazole and troleandomycin was evaluated on single CYPs. Testosterone metabolites were analyzed by HPLC and confirmed by GC/MS. In hepatocyte primary cultures, the most abundant metabolite was androstenedione (AS), whereas in liver microsomes, 6-β-hydroxytestosterone showed the largest peak. Formation of 6-β-hydroxytestosterone and 11-β-hydroxytestosterone in liver microsomes was inhibited by ketoconazole, troleandomycin, and quercetin. Equine recombinant CYP3A95 catalyzed 11-β-hydroxylation of testosterone (TES). Metabolism of BFC was significantly inhibited by ketoconazole in CYP3A95, whereas troleandomycin affected the activities of CYP3A94 and CYP3A95. Both inhibitors had no significant effect on CYP3A89. Metabolic reactions and effects of inhibitors differed between the equine CYP3A isoforms investigated. This has to be considered in future in vitro studies.
Resumo:
Drug-induced liver injury is a major safety issue. It can cause severe disease and is a common cause of the withdrawal of drugs from the pharmaceutical market. Recent studies have identified the HLA-B(∗)57:01 allele as a risk factor for floxacillin (FLUX)-induced liver injury and have suggested a role for cytotoxic CD8(+) T cells in the pathomechanism of liver injury caused by FLUX. This study aimed to confirm the importance of FLUX-reacting cytotoxic lymphocytes in the pathomechanism of liver injury and to dissect the involved mechanisms of cytotoxicity. IHC staining of a liver biopsy from a patient with FLUX-induced liver injury revealed periportal inflammation and the infiltration of cytotoxic CD3(+) CD8(+) lymphocytes into the liver. The infiltration of cytotoxic lymphocytes into the liver of a patient with FLUX-induced liver injury demonstrates the importance of FLUX-reacting T cells in the underlying pathomechanism. Cytotoxicity of FLUX-reacting T cells from 10 HLA-B(∗)57:01(+) healthy donors toward autologous target cells and HLA-B(∗)57:01-transduced hepatocytes was analyzed in vitro. Cytotoxicity of FLUX-reacting T cells was concentration dependent and required concentrations in the range of peak serum levels after FLUX administration. Killing of target cells was mediated by different cytotoxic mechanisms. Our findings emphasize the role of the adaptive immune system and especially of activated drug-reacting T cells in human leukocyte antigen-associated, drug-induced liver injury.
Resumo:
(31)P MRS magnetization transfer ((31)P-MT) experiments allow the estimation of exchange rates of biochemical reactions, such as the creatine kinase equilibrium and adenosine triphosphate (ATP) synthesis. Although various (31)P-MT methods have been successfully used on isolated organs or animals, their application on humans in clinical scanners poses specific challenges. This study compared two major (31)P-MT methods on a clinical MR system using heteronuclear surface coils. Although saturation transfer (ST) is the most commonly used (31)P-MT method, sequences such as inversion transfer (IT) with short pulses might be better suited for the specific hardware and software limitations of a clinical scanner. In addition, small NMR-undetectable metabolite pools can transfer MT to NMR-visible pools during long saturation pulses, which is prevented with short pulses. (31)P-MT sequences were adapted for limited pulse length, for heteronuclear transmit-receive surface coils with inhomogeneous B1 , for the need for volume selection and for the inherently low signal-to-noise ratio (SNR) on a clinical 3-T MR system. The ST and IT sequences were applied to skeletal muscle and liver in 10 healthy volunteers. Monte-Carlo simulations were used to evaluate the behavior of the IT measurements with increasing imperfections. In skeletal muscle of the thigh, ATP synthesis resulted in forward reaction constants (k) of 0.074 ± 0.022 s(-1) (ST) and 0.137 ± 0.042 s(-1) (IT), whereas the creatine kinase reaction yielded 0.459 ± 0.089 s(-1) (IT). In the liver, ATP synthesis resulted in k = 0.267 ± 0.106 s(-1) (ST), whereas the IT experiment yielded no consistent results. ST results were close to literature values; however, the IT results were either much larger than the corresponding ST values and/or were widely scattered. To summarize, ST and IT experiments can both be implemented on a clinical body scanner with heteronuclear transmit-receive surface coils; however, ST results are much more robust against experimental imperfections than the current implementation of IT.