2 resultados para Linearly Normal Curves
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVES: With more children receiving cochlear implants during infancy, there is a need for validated assessments of pre-verbal and early verbal auditory skills. The LittlEARS Auditory Questionnaire is presented here as the first module of the LittlEARS test battery. The LittlEARS Auditory Questionnaire was developed and piloted to assess the auditory behaviour of normal hearing children and hearing impaired children who receive a cochlear implant or hearing aid prior to 24 months of age. This paper presents results from two studies: one validating the LittlEARS Auditory Questionnaire on children with normal hearing who are German speaking and a second validating the norm curves found after adaptation and administration of the questionnaire to children with normal hearing in 15 different languages. METHODS: Scores from a group of 218 German and Austrian children with normal hearing between 5 days and 24 months of age were used to create a norm curve. The questionnaire was adapted from the German original into English and then 15 other languages to date. Regression curves were found based on parental responses from 3309 normal hearing infants and toddlers. Curves for each language were compared to the original German validation curve. RESULTS: The results of the first study were a norm curve which reflects the age-dependence of auditory behaviour, reliability and homogeneity as a measure of auditory behaviour, and calculations of expected and critical values as a function of age. Results of the second study show that the regression curves found for all the adapted languages are essentially equal to the German norm curve, as no statistically significant differences were found. CONCLUSIONS: The LittlEARS Auditory Questionnaire is a valid, language-independent tool for assessing the early auditory behaviour of infants and toddlers with normal hearing. The results of this study suggest that the LittlEARS Auditory Questionnaire could also be very useful for documenting children's progress with their current amplification, providing evidence of the need for implantation, or highlighting the need for follow-up in other developmental areas.
Resumo:
Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic Aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment System varying particle number concentration independent of particle chemistry, and an aerosol Deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully differentiated HBE is most appropriate in future toxicity studies.