5 resultados para Line flow
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
To study the effects of a milking system that partially compensates for milk flow-dependent vacuum loss compared with a standard (high-line) milking unit in a tie-stall barn, milk flow and vacuum patterns were recorded in 10 cows during machine milking with 2 milking systems in a crossover design for 7 d each. Before and after each treatment period postmilking teat condition was recorded by ultrasound cross-sectioning. Additionally, 2 methods to measure teat tissue condition were compared: longitudinal teat ultrasound cross-sectioning and teat tissue density measurements with the spring-loaded caliper (cutimeter method). The partial compensation of milk flow-dependent vacuum loss caused an elevation of the peak flow rate (4.74+/-0.08 vs. 4.29+/-0.07 kg/min) and a shorter duration of plateau (1.57+/-0.06 vs. 1.96+/-0.07 min) compared with the standard milking system. Total milk yield, duration of incline and decline of milk flow, average milk flow, time until peak flow rate, main milking time, and total milking time did not differ between treatments (overall means: 13.75+/-0.17 kg; 0.65+/-0.01 min; 2.88+/-0.09 min; 2.82+/-0.05 kg/min; 1.65+/-0.03 min; 5.23+/-0.09 min, and 5.30+/-0.10 min, respectively). The vacuum drop in the short milk tube during periods of high milk flow was less in the compensating vacuum than in the standard milking system (11+/-1.1 vs. 15+/-0.7 kPa). Teat measures as determined by ultrasound remained unchanged over the entire experimental period with both milking systems. Postmilking teat tissue measures including their recovery within 20 min after the end of milking show a correlation (0.85 and 0.71, respectively) between the methods used (ultrasound and cutimeter method). In conclusion, a more constant vacuum at the teat tip (within the short milk tube) during periods of high milk flow affected milk flow patterns, mainly increasing peak flow rate. However, the reduced vacuum loss did not increase the overall speed of milking. In addition, effects of higher vacuum stability on teat condition and udder health were not obvious.
Resumo:
This study investigated the uptake, kinetics and cellular distribution of different surface coated quantum dots (QDs) before relating this to their toxicity. J774.A1 cells were treated with organic, COOH and NH2 (PEG) surface coated QDs (40 nM). Model 20 nm and 200 nm COOH-modified coated polystyrene beads (PBs) were also examined (50 microg ml(-1)). The potential for uptake of QDs was examined by both fixed and live cell confocal microscopy as well as by flow cytometry over 2 h. Both the COOH 20 nm and 200 nm PBs were clearly and rapidly taken up by the J774.A1 cells, with uptake of 20 nm PBs being relatively quicker and more extensive. Similarly, COOH QDs were clearly taken up by the macrophages. Uptake of NH2 (PEG) QDs was not detectable by live cell imaging however, was observed following 3D reconstruction of fixed cells, as well as by flow cytometry. Cells treated with organic QDs, monitored by live cell imaging, showed only a small amount of uptake in a relatively small number of cells. This uptake was insufficient to be detected by flow cytometry. Imaging of fixed cells was not possible due to a loss in cell integrity related to cytotoxicity. A significant reduction (p<0.05) in the fluorescent intensity in a cell-free environment was found with organic QDs, NH2 (PEG) QDs, 20 nm and 200 nm PBs at pH 4.0 (indicative of an endosome) after 2 h, suggesting reduced stability. No evidence of exocytosis was found over 2 h. These findings confirm that surface coating has a significant influence on the mode of NP interaction with cells, as well as the subsequent consequences of that interaction.
Resumo:
Low-frequency "off-line" repetitive transcranial magnetic stimulation (rTMS) over the course of several minutes has attained considerable attention as a research tool in cognitive neuroscience due to its ability to induce functional disruptions of brain areas. This disruptive rTMS effect is highly valuable for revealing a causal relationship between brain and behavior. However, its influence on remote interconnected areas and, more importantly, the duration of the induced neurophysiological effects, remain unknown. These aspects are critical for a study design in the context of cognitive neuroscience. In order to investigate these issues, 12 healthy male subjects underwent 8 H(2)(15)O positron emission tomography (PET) scans after application of long-train low-frequency rTMS to the right dorsolateral prefrontal cortex (DLPFC). Immediately after the stimulation train, regional cerebral blood flow (rCBF) increases were present under the stimulation site as well as in other prefrontal cortical areas, including the ventrolateral prefrontal cortex (VLPFC) ipsilateral to the stimulation site. The mean increases in rCBF returned to baseline within 9 min. The duration of this unilateral prefrontal rTMS effect on rCBF is of particular interest to those who aim to influence behavior in cognitive paradigms that use an "off-line" approach.
Resumo:
Low-flow, low-gradient severe aortic stenosis (AS) is characterised by a small aortic valve area (AVA) and low mean gradient (MG) secondary to a low cardiac output and may occur in patients with either a preserved or reduced left ventricular ejection fraction (LVEF). Symptomatic patients presenting with low-flow, low-gradient severe AS have a dismal prognosis independent of baseline LVEF if managed conservatively and should therefore undergo aortic valve replacement if feasible. Transthoracic echocardiography (TTE) is the first-line investigation for the assessment of AS haemodynamic severity. However, when confronted with guideline-discordant AVA (small) and MG (low) values, there are several reasons other than severe AS combined with a low cardiac output which may lead to such a situation, including erroneous measurements, small body size, inherent inconsistencies in the guidelines' criteria, prolonged ejection time and aortic pseudostenosis. The distinction between these various entities poses a diagnostic challenge. However, it is important to make a distinction because each has very different implications in terms of risk stratification and therapeutic management. In such instances, cardiac catheterisation forms an integral part of the work-up of these patients in order to confirm or refute the echocardiographic findings to guide management decisions appropriately.
Resumo:
Quantitative genetics theory predicts adaptive evolution to be constrained along evolutionary lines of least resistance. In theory, hybridization and subsequent interspecific gene flow may however rapidly change the evolutionary constraints of a population and eventually change its evolutionary potential, but empirical evidence is still scarce. Using closely related species pairs of Lake Victoria cichlids sampled from four different islands with different levels of interspecific gene flow, we tested for potential effects of introgressive hybridization on phenotypic evolution in wild populations. We found that these effects differed among our study species. Constraints measured as the eccentricity of phenotypic variance-covariance matrices declined significantly with increasing gene flow in the less abundant species for matrices that have a diverged line of least resistance. In contrast we find no such decline for the more abundant species. Overall our results suggest that hybridization can change the underlying phenotypic variance-covariance matrix, potentially increasing the adaptive potential of such populations.